Cargando…

Landscape of gene fusions in epithelial cancers: seq and ye shall find

Enabled by high-throughput sequencing approaches, epithelial cancers across a range of tissue types are seen to harbor gene fusions as integral to their landscape of somatic aberrations. Although many gene fusions are found at high frequency in several rare solid cancers, apart from fusions involvin...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar-Sinha, Chandan, Kalyana-Sundaram, Shanker, Chinnaiyan, Arul M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683719/
https://www.ncbi.nlm.nih.gov/pubmed/26684754
http://dx.doi.org/10.1186/s13073-015-0252-1
_version_ 1782406071001808896
author Kumar-Sinha, Chandan
Kalyana-Sundaram, Shanker
Chinnaiyan, Arul M.
author_facet Kumar-Sinha, Chandan
Kalyana-Sundaram, Shanker
Chinnaiyan, Arul M.
author_sort Kumar-Sinha, Chandan
collection PubMed
description Enabled by high-throughput sequencing approaches, epithelial cancers across a range of tissue types are seen to harbor gene fusions as integral to their landscape of somatic aberrations. Although many gene fusions are found at high frequency in several rare solid cancers, apart from fusions involving the ETS family of transcription factors which have been seen in approximately 50 % of prostate cancers, several other common solid cancers have been shown to harbor recurrent gene fusions at low frequencies. On the other hand, many gene fusions involving oncogenes, such as those encoding ALK, RAF or FGFR kinase families, have been detected across multiple different epithelial carcinomas. Tumor-specific gene fusions can serve as diagnostic biomarkers or help define molecular subtypes of tumors; for example, gene fusions involving oncogenes such as ERG, ETV1, TFE3, NUT, POU5F1, NFIB, PLAG1, and PAX8 are diagnostically useful. Tumors with fusions involving therapeutically targetable genes such as ALK, RET, BRAF, RAF1, FGFR1–4, and NOTCH1–3 have immediate implications for precision medicine across tissue types. Thus, ongoing cancer genomic and transcriptomic analyses for clinical sequencing need to delineate the landscape of gene fusions. Prioritization of potential oncogenic “drivers” from “passenger” fusions, and functional characterization of potentially actionable gene fusions across diverse tissue types, will help translate these findings into clinical applications. Here, we review recent advances in gene fusion discovery and the prospects for medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-015-0252-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4683719
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-46837192015-12-19 Landscape of gene fusions in epithelial cancers: seq and ye shall find Kumar-Sinha, Chandan Kalyana-Sundaram, Shanker Chinnaiyan, Arul M. Genome Med Review Enabled by high-throughput sequencing approaches, epithelial cancers across a range of tissue types are seen to harbor gene fusions as integral to their landscape of somatic aberrations. Although many gene fusions are found at high frequency in several rare solid cancers, apart from fusions involving the ETS family of transcription factors which have been seen in approximately 50 % of prostate cancers, several other common solid cancers have been shown to harbor recurrent gene fusions at low frequencies. On the other hand, many gene fusions involving oncogenes, such as those encoding ALK, RAF or FGFR kinase families, have been detected across multiple different epithelial carcinomas. Tumor-specific gene fusions can serve as diagnostic biomarkers or help define molecular subtypes of tumors; for example, gene fusions involving oncogenes such as ERG, ETV1, TFE3, NUT, POU5F1, NFIB, PLAG1, and PAX8 are diagnostically useful. Tumors with fusions involving therapeutically targetable genes such as ALK, RET, BRAF, RAF1, FGFR1–4, and NOTCH1–3 have immediate implications for precision medicine across tissue types. Thus, ongoing cancer genomic and transcriptomic analyses for clinical sequencing need to delineate the landscape of gene fusions. Prioritization of potential oncogenic “drivers” from “passenger” fusions, and functional characterization of potentially actionable gene fusions across diverse tissue types, will help translate these findings into clinical applications. Here, we review recent advances in gene fusion discovery and the prospects for medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-015-0252-1) contains supplementary material, which is available to authorized users. BioMed Central 2015-12-18 /pmc/articles/PMC4683719/ /pubmed/26684754 http://dx.doi.org/10.1186/s13073-015-0252-1 Text en © Kumar-Sinha et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Review
Kumar-Sinha, Chandan
Kalyana-Sundaram, Shanker
Chinnaiyan, Arul M.
Landscape of gene fusions in epithelial cancers: seq and ye shall find
title Landscape of gene fusions in epithelial cancers: seq and ye shall find
title_full Landscape of gene fusions in epithelial cancers: seq and ye shall find
title_fullStr Landscape of gene fusions in epithelial cancers: seq and ye shall find
title_full_unstemmed Landscape of gene fusions in epithelial cancers: seq and ye shall find
title_short Landscape of gene fusions in epithelial cancers: seq and ye shall find
title_sort landscape of gene fusions in epithelial cancers: seq and ye shall find
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683719/
https://www.ncbi.nlm.nih.gov/pubmed/26684754
http://dx.doi.org/10.1186/s13073-015-0252-1
work_keys_str_mv AT kumarsinhachandan landscapeofgenefusionsinepithelialcancersseqandyeshallfind
AT kalyanasundaramshanker landscapeofgenefusionsinepithelialcancersseqandyeshallfind
AT chinnaiyanarulm landscapeofgenefusionsinepithelialcancersseqandyeshallfind