Cargando…
Landscape of gene fusions in epithelial cancers: seq and ye shall find
Enabled by high-throughput sequencing approaches, epithelial cancers across a range of tissue types are seen to harbor gene fusions as integral to their landscape of somatic aberrations. Although many gene fusions are found at high frequency in several rare solid cancers, apart from fusions involvin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683719/ https://www.ncbi.nlm.nih.gov/pubmed/26684754 http://dx.doi.org/10.1186/s13073-015-0252-1 |
_version_ | 1782406071001808896 |
---|---|
author | Kumar-Sinha, Chandan Kalyana-Sundaram, Shanker Chinnaiyan, Arul M. |
author_facet | Kumar-Sinha, Chandan Kalyana-Sundaram, Shanker Chinnaiyan, Arul M. |
author_sort | Kumar-Sinha, Chandan |
collection | PubMed |
description | Enabled by high-throughput sequencing approaches, epithelial cancers across a range of tissue types are seen to harbor gene fusions as integral to their landscape of somatic aberrations. Although many gene fusions are found at high frequency in several rare solid cancers, apart from fusions involving the ETS family of transcription factors which have been seen in approximately 50 % of prostate cancers, several other common solid cancers have been shown to harbor recurrent gene fusions at low frequencies. On the other hand, many gene fusions involving oncogenes, such as those encoding ALK, RAF or FGFR kinase families, have been detected across multiple different epithelial carcinomas. Tumor-specific gene fusions can serve as diagnostic biomarkers or help define molecular subtypes of tumors; for example, gene fusions involving oncogenes such as ERG, ETV1, TFE3, NUT, POU5F1, NFIB, PLAG1, and PAX8 are diagnostically useful. Tumors with fusions involving therapeutically targetable genes such as ALK, RET, BRAF, RAF1, FGFR1–4, and NOTCH1–3 have immediate implications for precision medicine across tissue types. Thus, ongoing cancer genomic and transcriptomic analyses for clinical sequencing need to delineate the landscape of gene fusions. Prioritization of potential oncogenic “drivers” from “passenger” fusions, and functional characterization of potentially actionable gene fusions across diverse tissue types, will help translate these findings into clinical applications. Here, we review recent advances in gene fusion discovery and the prospects for medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-015-0252-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4683719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-46837192015-12-19 Landscape of gene fusions in epithelial cancers: seq and ye shall find Kumar-Sinha, Chandan Kalyana-Sundaram, Shanker Chinnaiyan, Arul M. Genome Med Review Enabled by high-throughput sequencing approaches, epithelial cancers across a range of tissue types are seen to harbor gene fusions as integral to their landscape of somatic aberrations. Although many gene fusions are found at high frequency in several rare solid cancers, apart from fusions involving the ETS family of transcription factors which have been seen in approximately 50 % of prostate cancers, several other common solid cancers have been shown to harbor recurrent gene fusions at low frequencies. On the other hand, many gene fusions involving oncogenes, such as those encoding ALK, RAF or FGFR kinase families, have been detected across multiple different epithelial carcinomas. Tumor-specific gene fusions can serve as diagnostic biomarkers or help define molecular subtypes of tumors; for example, gene fusions involving oncogenes such as ERG, ETV1, TFE3, NUT, POU5F1, NFIB, PLAG1, and PAX8 are diagnostically useful. Tumors with fusions involving therapeutically targetable genes such as ALK, RET, BRAF, RAF1, FGFR1–4, and NOTCH1–3 have immediate implications for precision medicine across tissue types. Thus, ongoing cancer genomic and transcriptomic analyses for clinical sequencing need to delineate the landscape of gene fusions. Prioritization of potential oncogenic “drivers” from “passenger” fusions, and functional characterization of potentially actionable gene fusions across diverse tissue types, will help translate these findings into clinical applications. Here, we review recent advances in gene fusion discovery and the prospects for medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-015-0252-1) contains supplementary material, which is available to authorized users. BioMed Central 2015-12-18 /pmc/articles/PMC4683719/ /pubmed/26684754 http://dx.doi.org/10.1186/s13073-015-0252-1 Text en © Kumar-Sinha et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Review Kumar-Sinha, Chandan Kalyana-Sundaram, Shanker Chinnaiyan, Arul M. Landscape of gene fusions in epithelial cancers: seq and ye shall find |
title | Landscape of gene fusions in epithelial cancers: seq and ye shall find |
title_full | Landscape of gene fusions in epithelial cancers: seq and ye shall find |
title_fullStr | Landscape of gene fusions in epithelial cancers: seq and ye shall find |
title_full_unstemmed | Landscape of gene fusions in epithelial cancers: seq and ye shall find |
title_short | Landscape of gene fusions in epithelial cancers: seq and ye shall find |
title_sort | landscape of gene fusions in epithelial cancers: seq and ye shall find |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683719/ https://www.ncbi.nlm.nih.gov/pubmed/26684754 http://dx.doi.org/10.1186/s13073-015-0252-1 |
work_keys_str_mv | AT kumarsinhachandan landscapeofgenefusionsinepithelialcancersseqandyeshallfind AT kalyanasundaramshanker landscapeofgenefusionsinepithelialcancersseqandyeshallfind AT chinnaiyanarulm landscapeofgenefusionsinepithelialcancersseqandyeshallfind |