Cargando…

Host microbiota modulates development of social preference in mice

BACKGROUND: Mounting evidence indicates that the indigenous gut microbiota exerts long-lasting programming effects on brain function and behaviour. OBJECTIVE: In this study, we used the germ-free (GF) mouse model, devoid of any microbiota throughout development, to assess the influence of the indige...

Descripción completa

Detalles Bibliográficos
Autores principales: Arentsen, Tim, Raith, Henrike, Qian, Yu, Forssberg, Hans, Heijtz, Rochellys Diaz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Co-Action Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683992/
https://www.ncbi.nlm.nih.gov/pubmed/26679775
http://dx.doi.org/10.3402/mehd.v26.29719
Descripción
Sumario:BACKGROUND: Mounting evidence indicates that the indigenous gut microbiota exerts long-lasting programming effects on brain function and behaviour. OBJECTIVE: In this study, we used the germ-free (GF) mouse model, devoid of any microbiota throughout development, to assess the influence of the indigenous microbiota on social preference and repetitive behaviours (e.g. self-grooming). METHODS AND RESULTS: Using the three-chambered social approach task, we demonstrate that when adult GF mice were given a choice to spend time with a novel mouse or object, they spent significantly more time sniffing and interacting with the stimulus mouse compared to conventionally raised mice (specific pathogen-free, SPF). Time spent in repetitive self-grooming behaviour, however, did not differ between GF and SPF mice. Real-time PCR–based gene expression analysis of the amygdala, a key region that is part of the social brain network, revealed a significant reduction in the mRNA levels of total brain-derived neurotrophic factor (BDNF), BDNF exon I-, IV-, VI-, IX-containing transcripts, and NGFI-A (a signalling molecule downstream of BDNF) in GF mice compared to SPF mice. CONCLUSION: These results suggest that differential regulation of BDNF exon transcripts in the amygdala by the indigenous microbes may contribute to the altered social development of GF mice.