Cargando…

Sequencing and comparative genomics analysis in Senecio scandens Buch.-Ham. Ex D. Don, based on full-length cDNA library

Senecio scandens Buch.-Ham. ex D. Don, an important antibacterial source of Chinese traditional medicine, has a widespread distribution in a few ecological habitats of China. We generated a full-length complementary DNA (cDNA) library from a sample of elite individuals with superior antibacterial pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Gang, Ping, Junjiao, Zhang, Zhen, Xu, Delin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684062/
https://www.ncbi.nlm.nih.gov/pubmed/26740776
http://dx.doi.org/10.1080/13102818.2014.956461
Descripción
Sumario:Senecio scandens Buch.-Ham. ex D. Don, an important antibacterial source of Chinese traditional medicine, has a widespread distribution in a few ecological habitats of China. We generated a full-length complementary DNA (cDNA) library from a sample of elite individuals with superior antibacterial properties, with satisfactory parameters such as library storage (4.30 × 10(6) CFU), efficiency of titre (1.30 × 10(6) CFU/mL), transformation efficiency (96.35%), full-length ratio (64.00%) and redundancy ratio (3.28%). The BLASTN search revealed the facile formation of counterparts between the experimental sample and Arabidopsis thaliana in view of high-homology cDNA sequence (90.79%) with e-values <1e – 50. Sequence similarities to known proteins indicate that the entire sequences of the full-length cDNA clones consist of the major of functional genes identified by a large set of microarray data from the present experimental material. For other Compositae species, a large set of full-length cDNA clones reported in the present article will serve as a useful resource to facilitate further research on the transferability of expressed sequence tag-derived simple sequence repeats (EST-SSR) development, comparative genomics and novel transcript profiles.