Cargando…
A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction
Modeling sensitivity to drugs based on genetic characterizations is a significant challenge in the area of systems medicine. Ensemble based approaches such as Random Forests have been shown to perform well in both individual sensitivity prediction studies and team science based prediction challenges...
Autores principales: | Haider, Saad, Rahman, Raziur, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684346/ https://www.ncbi.nlm.nih.gov/pubmed/26658256 http://dx.doi.org/10.1371/journal.pone.0144490 |
Ejemplares similares
-
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2016) -
Heterogeneity Aware Random Forest for Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2017) -
Functional random forest with applications in dose-response predictions
por: Rahman, Raziur, et al.
Publicado: (2019) -
Application of transfer learning for cancer drug sensitivity prediction
por: Dhruba, Saugato Rahman, et al.
Publicado: (2018) -
Investigation of model stacking for drug sensitivity prediction
por: Matlock, Kevin, et al.
Publicado: (2018)