Cargando…

EGCG Protects against 6-OHDA-Induced Neurotoxicity in a Cell Culture Model

Background. Parkinson's disease (PD) is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression. Objective. To test the protective effect of (−)-epigallocatechin-3-gallate (EGCG) against 6-hydroxydo...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Dan, Kanthasamy, Anumantha G., Reddy, Manju B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684886/
https://www.ncbi.nlm.nih.gov/pubmed/26770869
http://dx.doi.org/10.1155/2015/843906
Descripción
Sumario:Background. Parkinson's disease (PD) is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression. Objective. To test the protective effect of (−)-epigallocatechin-3-gallate (EGCG) against 6-hydroxydopamine- (6-OHDA-) induced neurotoxicity by regulating iron metabolism in N27 cells. Methods. Protection by EGCG in N27 cells was assessed by SYTOX green assay, MTT, and caspase-3 activity. Iron regulatory gene and protein expression were measured by RT-PCR and Western blotting. Intracellular iron uptake was measured using (55)Fe. The EGCG protection was further tested in primary mesencephalic dopaminergic neurons by immunocytochemistry. Results. EGCG protected against 6-OHDA-induced cell toxicity. 6-OHDA treatment significantly (p < 0.05) increased divalent metal transporter-1 (DMT1) and hepcidin and decreased ferroportin 1 (Fpn1) level, whereas pretreatment with EGCG counteracted the effects. The increased (55)Fe (by 96%, p < 0.01) cell uptake confirmed the iron burden by 6-OHDA and was reduced by EGCG by 27% (p < 0.05), supporting the DMT1 results. Pretreatment with EGCG and 6-OHDA significantly increased (p < 0.0001) TH(+) cell count (~3-fold) and neurite length (~12-fold) compared to 6-OHDA alone in primary mesencephalic neurons. Conclusions. Pretreatment with EGCG protected against 6-OHDA-induced neurotoxicity by regulating genes and proteins involved in brain iron homeostasis, especially modulating hepcidin levels.