Cargando…
Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives
BACKGROUND: In neuroscience, experimental designs in which multiple measurements are collected in the same research object or treatment facility are common. Such designs result in clustered or nested data. When clusters include measurements from different experimental conditions, both the mean of th...
Autores principales: | Aarts, Emmeke, Dolan, Conor V., Verhage, Matthijs, van der Sluis, Sophie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684932/ https://www.ncbi.nlm.nih.gov/pubmed/26685825 http://dx.doi.org/10.1186/s12868-015-0228-5 |
Ejemplares similares
-
Sheltering Behavior and Locomotor Activity in 11 Genetically Diverse Common Inbred Mouse Strains Using Home-Cage Monitoring
por: Loos, Maarten, et al.
Publicado: (2014) -
A Note on False Positives and Power in G × E Modelling of Twin Data
por: van der Sluis, Sophie, et al.
Publicado: (2011) -
Phenotypic Complexity, Measurement Bias, and Poor Phenotypic Resolution Contribute to the Missing Heritability Problem in Genetic Association Studies
por: van der Sluis, Sophie, et al.
Publicado: (2010) -
Power and optimal study design in iPSC-based brain disease modelling
por: Brunner, Jessie W., et al.
Publicado: (2022) -
Power Calculations Using Exact Data Simulation: A Useful Tool for Genetic Study Designs
por: van der Sluis, Sophie, et al.
Publicado: (2007)