Cargando…
Feature-based fuzzy connectedness segmentation of ultrasound images with an object completion step
Medical ultrasound (US) image segmentation and quantification can be challenging due to signal dropouts, missing boundaries, and presence of speckle, which gives images of similar objects quite different appearance. Typically, purely intensity-based methods do not lead to a good segmentation of the...
Autores principales: | Rueda, Sylvia, Knight, Caroline L., Papageorghiou, Aris T., Alison Noble, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686006/ https://www.ncbi.nlm.nih.gov/pubmed/26319973 http://dx.doi.org/10.1016/j.media.2015.07.002 |
Ejemplares similares
-
Vascular segmentation in hepatic CT images using adaptive threshold fuzzy connectedness method
por: Guo, Xiaoxi, et al.
Publicado: (2015) -
Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging
por: Sharma, Harshita, et al.
Publicado: (2021) -
An Improved Fuzzy Connectedness Method for Automatic Three-Dimensional Liver Vessel Segmentation in CT Images
por: Zhang, Rui, et al.
Publicado: (2018) -
Gaze-Probe Joint Guidance with Multi-task Learning in Obstetric Ultrasound Scanning
por: Men, Qianhui, et al.
Publicado: (2023) -
Learning-based prediction of gestational age from ultrasound images of the fetal brain
por: Namburete, Ana I.L., et al.
Publicado: (2015)