Cargando…
Improving Cancer Gene Expression Data Quality through a TCGA Data-Driven Evaluation of Identifier Filtering
Data quality is a recognized problem for high-throughput genomics platforms, as evinced by the proliferation of methods attempting to filter out lower quality data points. Different filtering methods lead to discordant results, raising the question, which methods are best? Astonishingly, little comp...
Autores principales: | McDade, Kevin K., Chandran, Uma, Day, Roger S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686346/ https://www.ncbi.nlm.nih.gov/pubmed/26715829 http://dx.doi.org/10.4137/CIN.S33076 |
Ejemplares similares
-
A decision theory paradigm for evaluating identifier mapping and filtering methods using data integration
por: Day, Roger S, et al.
Publicado: (2013) -
TCGA Expedition: A Data Acquisition and Management System for TCGA Data
por: Chandran, Uma R., et al.
Publicado: (2016) -
Identifier mapping performance for integrating transcriptomics and proteomics experimental results
por: Day, Roger S, et al.
Publicado: (2011) -
TCGA and ESTIMATE data mining to identify potential prognostic biomarkers in HCC patients
por: He, Guolin, et al.
Publicado: (2020) -
Analyzing TCGA Data to Identify Gene Mutations Linked to Hepatocellular Carcinoma in Asians
por: Kim, Tane, et al.
Publicado: (2022)