Cargando…

Cold-aggravated pain in humans caused by a hyperactive Na(V)1.9 channel mutant

Gain-of-function mutations in the human SCN11A-encoded voltage-gated Na(+) channel Na(V)1.9 cause severe pain disorders ranging from neuropathic pain to congenital pain insensitivity. However, the entire spectrum of the Na(V)1.9 diseases has yet to be defined. Applying whole-exome sequencing we here...

Descripción completa

Detalles Bibliográficos
Autores principales: Leipold, Enrico, Hanson-Kahn, Andrea, Frick, Miya, Gong, Ping, Bernstein, Jonathan A., Voigt, Martin, Katona, Istvan, Oliver Goral, R., Altmüller, Janine, Nürnberg, Peter, Weis, Joachim, Hübner, Christian A., Heinemann, Stefan H., Kurth, Ingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686659/
https://www.ncbi.nlm.nih.gov/pubmed/26645915
http://dx.doi.org/10.1038/ncomms10049
Descripción
Sumario:Gain-of-function mutations in the human SCN11A-encoded voltage-gated Na(+) channel Na(V)1.9 cause severe pain disorders ranging from neuropathic pain to congenital pain insensitivity. However, the entire spectrum of the Na(V)1.9 diseases has yet to be defined. Applying whole-exome sequencing we here identify a missense change (p.V1184A) in Na(V)1.9, which leads to cold-aggravated peripheral pain in humans. Electrophysiological analysis reveals that p.V1184A shifts the voltage dependence of channel opening to hyperpolarized potentials thereby conferring gain-of-function characteristics to Na(V)1.9. Mutated channels diminish the resting membrane potential of mouse primary sensory neurons and cause cold-resistant hyperexcitability of nociceptors, suggesting a mechanistic basis for the temperature dependence of the pain phenotype. On the basis of direct comparison of the mutations linked to either cold-aggravated pain or pain insensitivity, we propose a model in which the physiological consequence of a mutation, that is, augmented versus absent pain, is critically dependent on the type of Na(V)1.9 hyperactivity.