Cargando…
Real-space collapse of a polariton condensate
Microcavity polaritons are two-dimensional bosonic fluids with strong nonlinearities, composed of coupled photonic and electronic excitations. In their condensed form, they display quantum hydrodynamic features similar to atomic Bose–Einstein condensates, such as long-range coherence, superfluidity...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686858/ https://www.ncbi.nlm.nih.gov/pubmed/26634817 http://dx.doi.org/10.1038/ncomms9993 |
Sumario: | Microcavity polaritons are two-dimensional bosonic fluids with strong nonlinearities, composed of coupled photonic and electronic excitations. In their condensed form, they display quantum hydrodynamic features similar to atomic Bose–Einstein condensates, such as long-range coherence, superfluidity and quantized vorticity. Here we report the unique phenomenology that is observed when a pulse of light impacts the polariton vacuum: the fluid which is suddenly created does not splash but instead coheres into a very bright spot. The real-space collapse into a sharp peak is at odd with the repulsive interactions of polaritons and their positive mass, suggesting that an unconventional mechanism is at play. Our modelling devises a possible explanation in the self-trapping due to a local heating of the crystal lattice, that can be described as a collective polaron formed by a polariton condensate. These observations hint at the polariton fluid dynamics in conditions of extreme intensities and ultrafast times. |
---|