Cargando…
Machine Learning to Differentiate Between Positive and Negative Emotions Using Pupil Diameter
Pupil diameter (PD) has been suggested as a reliable parameter for identifying an individual’s emotional state. In this paper, we introduce a learning machine technique to detect and differentiate between positive and negative emotions. We presented 30 participants with positive and negative sound s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686885/ https://www.ncbi.nlm.nih.gov/pubmed/26733912 http://dx.doi.org/10.3389/fpsyg.2015.01921 |
Sumario: | Pupil diameter (PD) has been suggested as a reliable parameter for identifying an individual’s emotional state. In this paper, we introduce a learning machine technique to detect and differentiate between positive and negative emotions. We presented 30 participants with positive and negative sound stimuli and recorded pupillary responses. The results showed a significant increase in pupil dilation during the processing of negative and positive sound stimuli with greater increase for negative stimuli. We also found a more sustained dilation for negative compared to positive stimuli at the end of the trial, which was utilized to differentiate between positive and negative emotions using a machine learning approach which gave an accuracy of 96.5% with sensitivity of 97.93% and specificity of 98%. The obtained results were validated using another dataset designed for a different study and which was recorded while 30 participants processed word pairs with positive and negative emotions. |
---|