Cargando…
SVM2Motif—Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor
Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but—due to its black-box...
Autores principales: | Vidovic, Marina M. -C., Görnitz, Nico, Müller, Klaus-Robert, Rätsch, Gunnar, Kloft, Marius |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686957/ https://www.ncbi.nlm.nih.gov/pubmed/26690911 http://dx.doi.org/10.1371/journal.pone.0144782 |
Ejemplares similares
-
ML2Motif—Reliable extraction of discriminative sequence motifs from learning machines
por: Vidovic, Marina M. -C., et al.
Publicado: (2017) -
MD-SVM: a novel SVM-based algorithm for the motif discovery of transcription factor binding sites
por: Hu, Jialu, et al.
Publicado: (2019) -
SVM and SVM Ensembles in Breast Cancer Prediction
por: Huang, Min-Wei, et al.
Publicado: (2017) -
SVM clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2007) -
svmPRAT: SVM-based Protein Residue Annotation Toolkit
por: Rangwala, Huzefa, et al.
Publicado: (2009)