Cargando…
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variatio...
Autores principales: | Ming-jun, Deng, Shi-ru, Qu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687339/ https://www.ncbi.nlm.nih.gov/pubmed/26779258 http://dx.doi.org/10.1155/2015/875243 |
Ejemplares similares
-
Forecasting Short-Term Traffic Flow by Fuzzy Wavelet Neural Network with Parameters Optimized by Biogeography-Based Optimization Algorithm
por: Chen, Jeng-Fung, et al.
Publicado: (2018) -
Forecasting, structural time series models and the Kalman filter
por: Harvey, Andrew C
Publicado: (1990) -
Application of Kalman Filter Model in the Landslide Deformation Forecast
por: Lu, Fumin, et al.
Publicado: (2020) -
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
por: Tseng, Chien-Hao, et al.
Publicado: (2016) -
Dynamics identification and forecasting of COVID-19 by switching Kalman filters
por: Zeng, Xiaoshu, et al.
Publicado: (2020)