Cargando…

Anti-wrinkle effects of a tuna heart H(2)O fraction on Hs27 human fibroblasts

With the increase in life expectancy, there is also growing interest in anti-aging treatments and technologies. The development of anti-aging functional drugs for the skin, and foods from natural sources, may offer solutions to this global matter. Aging involves structural, functional and biochemica...

Descripción completa

Detalles Bibliográficos
Autores principales: KIM, YOUNG-MIN, JUNG, HEE-JIN, CHOI, JAE-SUE, NAM, TAEK-JEONG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687440/
https://www.ncbi.nlm.nih.gov/pubmed/26572171
http://dx.doi.org/10.3892/ijmm.2015.2407
Descripción
Sumario:With the increase in life expectancy, there is also growing interest in anti-aging treatments and technologies. The development of anti-aging functional drugs for the skin, and foods from natural sources, may offer solutions to this global matter. Aging involves structural, functional and biochemical changes that occur throughout cells and bodily tissues; the amount of hormones secreted from of all human organs, including the skin, decreases over time. Matrix metalloproteinase (MMP) genes (MMP-1 and -8) play an important role in the aging of skin fibroblasts. For example, an increased MMP expression causes accelerated aging and the degradation of skin elasticity-related genes. In the present study, we examined the anti-wrinkle effects of tuna heart extract which are mediated through the inhibition of MMPs in skin cells. Generally, tuna contains high concentrations of selenium and antioxidants, which serve to remove free radicals, and is known to delay skin and body aging. In addition, unsaturated fatty acids in tuna help to maintain the natural glossy look of skin, and increase skin elasticity, providing moisture for dry skin. A recent study confirmed the various bio-effects of boiled tuna extract and muscle. However, bioactivity studies using tuna heart are limited. Thus, in the present study, we obtained extracts and fractions of tuna heart, and examined their effects on Hs27 human fibroblast proliferation using an MTS assay. In addition, we measured procollagen type 1 levels and elastase activity, and performed β-galactosidase staining. We then measured the expression levels of phosphatidylinositol 3-kinase/Akt and MMP-related genes by western blot analysis and RT-PCR. Our results revealed that tuna heart extract decreased MMP expression by upregulating tissue inhibitors of metallopro-teinase-1 (TIMP-1) and decreasing elastase activity, thus exerting anti-aging and anti-wrinkle effects by increasing collagen synthesis and promoting skin fibroblast proliferation. Thus, our data suggest that tuna heart (TH)-H(2)O fractions exert anti-wrinkle effects on Hs27 cells.