Cargando…
Serglycin in Quiescent and Proliferating Primary Endothelial Cells
Proteoglycans are fundamental components of the endothelial barrier, but the functions of the proteoglycan serglycin in endothelium are less described. Our aim was to describe the roles of serglycin in processes relevant for endothelial dysfunction. Primary human umbilical vein endothelial cells (HU...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687888/ https://www.ncbi.nlm.nih.gov/pubmed/26694746 http://dx.doi.org/10.1371/journal.pone.0145584 |
Sumario: | Proteoglycans are fundamental components of the endothelial barrier, but the functions of the proteoglycan serglycin in endothelium are less described. Our aim was to describe the roles of serglycin in processes relevant for endothelial dysfunction. Primary human umbilical vein endothelial cells (HUVEC) were cultured in vitro and the expression of proteoglycans was investigated. Dense cell cultures representing the quiescent endothelium coating the vasculature was compared to sparse activated cell cultures, relevant for diabetes, cancer and cardiovascular disease. Secretion of (35)S- proteoglycans increased in sparse cultures, and we showed that serglycin is a major component of the cell-density sensitive proteoglycan population. In contrast to the other proteoglycans, serglycin expression and secretion was higher in proliferating compared to quiescent HUVEC. RNAi silencing of serglycin inhibited proliferation and wound healing, and serglycin expression and secretion was augmented by hypoxia, mechanical strain and IL-1β induced inflammation. Notably, the secretion of the angiogenic chemokine CCL2 resulting from IL-1β activation, was increased in serglycin knockdown cells, while angiopoietin was not affected. Both serglycin and CCL2 were secreted predominantly to the apical side of polarized HUVEC, and serglycin and CCL2 co-localized both in perinuclear areas and in vesicles. These results suggest functions for serglycin in endothelial cells trough interactions with partner molecules, in biological processes with relevance for diabetic complications, cardiovascular disease and cancer development. |
---|