Cargando…

Dentin dysplasia type I—novel findings in deciduous and permanent teeth

BACKGROUND: Dentin dysplasia type I (DD-I) is a rare autosomal dominant hereditary disorder which seriously affects the root development of teeth, causing spontaneous tooth loss (in teenagers). At present, the study of DD-I focuses on familial and phenotypic analyses and reports regarding the ultras...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Xin, Li, Kunyang, Liu, Ling, Yu, Fangfang, Xiong, Fu, Fan, Yun, Xu, Xiangmin, Zuo, Chunran, Chen, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689058/
https://www.ncbi.nlm.nih.gov/pubmed/26693824
http://dx.doi.org/10.1186/s12903-015-0149-9
Descripción
Sumario:BACKGROUND: Dentin dysplasia type I (DD-I) is a rare autosomal dominant hereditary disorder which seriously affects the root development of teeth, causing spontaneous tooth loss (in teenagers). At present, the study of DD-I focuses on familial and phenotypic analyses and reports regarding the ultrastructural study of DD-I are few. The purpose of this study was to clarify and discuss the clinical, histopathological, and ultrastructural features of the dentin defects in DD-I. In addition, the study further explores the root development and provides clues for uncovering virulent genes associated with the disease. METHODS: We recruited 31 members of a four-generation Chinese family, including eleven with dentin defects. Four permanent teeth and four deciduous teeth were obtained from individuals affected by DD-I. At the same time, two caries-free like-numbered permanent teeth and deciduous teeth served as controls, respectively. Analyses of these teeth were carried out using stereomicroscopy, light microscopy, and scanning and transmission electron microscopy, respectively. RESULTS: Similar to previous reports, extracted teeth showed typical histopathological and ultrastructural features of DD-I and teeth had short roots with obliterated pulp chambers. Furthermore, several novel discoveries were found in teeth affected by DD-I, including; (1) thinner dentin; (2) larger scalloped dentinoenamel junctions; (3) teardrop-shaped lacunae in the enamel; (4) rodless enamel and (5) irregular collagen fibers. CONCLUSIONS: The results exhibited defined features of DD-I in the family and further confirmed that abnormal dentin structure affected both the deciduous and permanent dentitions. In addition, these findings may contribute to a better understanding of the pathogenesis of DD-I as well as aid in the subclassification of this disease.