Cargando…

Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes

Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized...

Descripción completa

Detalles Bibliográficos
Autores principales: Glukhov, Alexey V., Balycheva, Marina, Sanchez-Alonso, Jose L., Ilkan, Zeki, Alvarez-Laviada, Anita, Bhogal, Navneet, Diakonov, Ivan, Schobesberger, Sophie, Sikkel, Markus B., Bhargava, Anamika, Faggian, Giuseppe, Punjabi, Prakash P., Houser, Steven R., Gorelik, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689179/
https://www.ncbi.nlm.nih.gov/pubmed/26450916
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018131
Descripción
Sumario:Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs). METHODS AND RESULTS—: Isolated rat and human AMs were characterized by scanning ion conductance, confocal, and electron microscopy. Half of AMs possessed T-tubules and structured topography, proportional to cell width. A bigger proportion of myocytes in the left atrium had organized T-tubules and topography than in the right atrium. Super-resolution scanning patch clamp showed that LTCCs distribute equally in T-tubules and crest areas of the sarcolemma, whereas, in ventricular myocytes, LTCCs primarily cluster in T-tubules. Rat, but not human, T-tubule LTCCs had open probability similar to crest LTCCs, but exhibited ≈40% greater current. Optical mapping of Ca(2+) transients revealed that rat AMs presented ≈3-fold as many spontaneous Ca(2+) release events as ventricular myocytes. Occurrence of crest LTCCs and spontaneous Ca(2+) transients were eliminated by either a caveolae-targeted LTCC antagonist or disrupting caveolae with methyl-β-cyclodextrin, with an associated ≈30% whole-cell I(Ca,L) reduction. Heart failure (16 weeks post–myocardial infarction) in rats resulted in a T-tubule degradation (by ≈40%) and significant elevation of spontaneous Ca(2+) release events. Although heart failure did not affect LTCC occurrence, it led to ≈25% decrease in T-tubule LTCC amplitude. CONCLUSIONS—: We provide the first direct evidence for the existence of 2 distinct subpopulations of functional LTCCs in rat and human AMs, with their biophysical properties modulated in heart failure in a microdomain-specific manner.