Cargando…
Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential
Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l.) improves skeletal muscle regeneration in sedentary adult women. Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689811/ https://www.ncbi.nlm.nih.gov/pubmed/26733888 http://dx.doi.org/10.3389/fphys.2015.00399 |
_version_ | 1782406895895576576 |
---|---|
author | Pietrangelo, Tiziana Di Filippo, Ester S. Mancinelli, Rosa Doria, Christian Rotini, Alessio Fanò-Illic, Giorgio Fulle, Stefania |
author_facet | Pietrangelo, Tiziana Di Filippo, Ester S. Mancinelli, Rosa Doria, Christian Rotini, Alessio Fanò-Illic, Giorgio Fulle, Stefania |
author_sort | Pietrangelo, Tiziana |
collection | PubMed |
description | Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l.) improves skeletal muscle regeneration in sedentary adult women. Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before and after this exercise training at low altitude. They were investigated for differentiation aspects, superoxide anion production, antioxidant enzymes, mitochondrial potential variation after a depolarizing insult, intracellular Ca(2+) concentrations, and micro (mi)RNA expression (miR-1, miR-133, miR-206). Results: In these myogenic populations of adult stem cells, those obtained after exercise training, showed increased Fusion Index and intracellular Ca(2+) concentrations. This exercise training also generally reduced superoxide anion production in cells (by 12–67%), although not in two women, where there was an increase of ~15% along with a reduced superoxide dismutase activity. miRNA expression showed an exercise-induced epigenetic transcription profile that was specific according to the reduced or increased superoxide anion production of the cells. Conclusions: The present study shows that low-to-moderate exercise training at low altitude improves the regenerative capacity of skeletal muscle in adult women. The differentiation of cells was favored by increased intracellular calcium concentration and increased the fusion index. This low-to-moderate training at low altitude also depicted the epigenetic signature of cells. |
format | Online Article Text |
id | pubmed-4689811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-46898112016-01-05 Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential Pietrangelo, Tiziana Di Filippo, Ester S. Mancinelli, Rosa Doria, Christian Rotini, Alessio Fanò-Illic, Giorgio Fulle, Stefania Front Physiol Physiology Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l.) improves skeletal muscle regeneration in sedentary adult women. Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before and after this exercise training at low altitude. They were investigated for differentiation aspects, superoxide anion production, antioxidant enzymes, mitochondrial potential variation after a depolarizing insult, intracellular Ca(2+) concentrations, and micro (mi)RNA expression (miR-1, miR-133, miR-206). Results: In these myogenic populations of adult stem cells, those obtained after exercise training, showed increased Fusion Index and intracellular Ca(2+) concentrations. This exercise training also generally reduced superoxide anion production in cells (by 12–67%), although not in two women, where there was an increase of ~15% along with a reduced superoxide dismutase activity. miRNA expression showed an exercise-induced epigenetic transcription profile that was specific according to the reduced or increased superoxide anion production of the cells. Conclusions: The present study shows that low-to-moderate exercise training at low altitude improves the regenerative capacity of skeletal muscle in adult women. The differentiation of cells was favored by increased intracellular calcium concentration and increased the fusion index. This low-to-moderate training at low altitude also depicted the epigenetic signature of cells. Frontiers Media S.A. 2015-12-24 /pmc/articles/PMC4689811/ /pubmed/26733888 http://dx.doi.org/10.3389/fphys.2015.00399 Text en Copyright © 2015 Pietrangelo, Di Filippo, Mancinelli, Doria, Rotini, Fanò-Illic and Fulle. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Pietrangelo, Tiziana Di Filippo, Ester S. Mancinelli, Rosa Doria, Christian Rotini, Alessio Fanò-Illic, Giorgio Fulle, Stefania Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential |
title | Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential |
title_full | Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential |
title_fullStr | Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential |
title_full_unstemmed | Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential |
title_short | Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential |
title_sort | low intensity exercise training improves skeletal muscle regeneration potential |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689811/ https://www.ncbi.nlm.nih.gov/pubmed/26733888 http://dx.doi.org/10.3389/fphys.2015.00399 |
work_keys_str_mv | AT pietrangelotiziana lowintensityexercisetrainingimprovesskeletalmuscleregenerationpotential AT difilippoesters lowintensityexercisetrainingimprovesskeletalmuscleregenerationpotential AT mancinellirosa lowintensityexercisetrainingimprovesskeletalmuscleregenerationpotential AT doriachristian lowintensityexercisetrainingimprovesskeletalmuscleregenerationpotential AT rotinialessio lowintensityexercisetrainingimprovesskeletalmuscleregenerationpotential AT fanoillicgiorgio lowintensityexercisetrainingimprovesskeletalmuscleregenerationpotential AT fullestefania lowintensityexercisetrainingimprovesskeletalmuscleregenerationpotential |