Cargando…
Modeling and Experimental Demonstration of a Hopfield Network Analog-to-Digital Converter with Hybrid CMOS/Memristor Circuits
The purpose of this work was to demonstrate the feasibility of building recurrent artificial neural networks with hybrid complementary metal oxide semiconductor (CMOS)/memristor circuits. To do so, we modeled a Hopfield network implementing an analog-to-digital converter (ADC) with up to 8 bits of p...
Autores principales: | Guo, Xinjie, Merrikh-Bayat, Farnood, Gao, Ligang, Hoskins, Brian D., Alibart, Fabien, Linares-Barranco, Bernabe, Theogarajan, Luke, Teuscher, Christof, Strukov, Dmitri B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689862/ https://www.ncbi.nlm.nih.gov/pubmed/26732664 http://dx.doi.org/10.3389/fnins.2015.00488 |
Ejemplares similares
-
Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors
por: Prezioso, M., et al.
Publicado: (2016) -
Corrigendum: A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit
por: Chakrabarti, B., et al.
Publicado: (2017) -
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2019) -
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit
por: Chakrabarti, B., et al.
Publicado: (2017) -
A CMOS–memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity
por: Ahmadi-Farsani, Javad, et al.
Publicado: (2022)