Cargando…
Supervised Machine Learning for Classification of the Electrophysiological Effects of Chronotropic Drugs on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
Supervised machine learning can be used to predict which drugs human cardiomyocytes have been exposed to. Using electrophysiological data collected from human cardiomyocytes with known exposure to different drugs, a supervised machine learning algorithm can be trained to recognize and classify cells...
Autores principales: | Heylman, Christopher, Datta, Rupsa, Sobrino, Agua, George, Steven, Gratton, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690607/ https://www.ncbi.nlm.nih.gov/pubmed/26695765 http://dx.doi.org/10.1371/journal.pone.0144572 |
Ejemplares similares
-
Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes
por: Datta, Rupsa, et al.
Publicado: (2016) -
3D microtumors in vitro supported by perfused vascular networks
por: Sobrino, Agua, et al.
Publicado: (2016) -
Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes
por: Rajamohan, Divya, et al.
Publicado: (2016) -
Sinoatrial Node Structure, Mechanics, Electrophysiology and the Chronotropic Response to Stretch in Rabbit and Mouse
por: MacDonald, Eilidh A., et al.
Publicado: (2020) -
Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system
por: Zhu, Huanqi, et al.
Publicado: (2017)