Cargando…

Infectious Entry Pathway of Enterovirus B Species

Enterovirus B species (EV-B) are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Marjomäki, Varpu, Turkki, Paula, Huttunen, Moona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690868/
https://www.ncbi.nlm.nih.gov/pubmed/26690201
http://dx.doi.org/10.3390/v7122945
_version_ 1782407051468603392
author Marjomäki, Varpu
Turkki, Paula
Huttunen, Moona
author_facet Marjomäki, Varpu
Turkki, Paula
Huttunen, Moona
author_sort Marjomäki, Varpu
collection PubMed
description Enterovirus B species (EV-B) are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1), actin, Na/H exchanger, phospholipace C (PLC) and protein kinase Cα (PKCα). Another characteristic feature is the entry of these viruses to neutral endosomes, independence of endosomal acidification and low association with acidic lysosomes. The biogenesis of neutral multivesicular bodies is crucial for their infection, at least for echovirus 1 (E1) and coxsackievirus A9 (CVA9). These pathways are triggered by the virus binding to their receptors on the plasma membrane, and they are not efficiently recycled like other cellular pathways used by circulating receptors. Therefore, the best “markers” of these pathways may be the viruses and often their receptors. A deeper understanding of this pathway and associated endosomes is crucial in elucidating the mechanisms of enterovirus uncoating and genome release from the endosomes to start efficient replication.
format Online
Article
Text
id pubmed-4690868
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-46908682016-01-04 Infectious Entry Pathway of Enterovirus B Species Marjomäki, Varpu Turkki, Paula Huttunen, Moona Viruses Review Enterovirus B species (EV-B) are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1), actin, Na/H exchanger, phospholipace C (PLC) and protein kinase Cα (PKCα). Another characteristic feature is the entry of these viruses to neutral endosomes, independence of endosomal acidification and low association with acidic lysosomes. The biogenesis of neutral multivesicular bodies is crucial for their infection, at least for echovirus 1 (E1) and coxsackievirus A9 (CVA9). These pathways are triggered by the virus binding to their receptors on the plasma membrane, and they are not efficiently recycled like other cellular pathways used by circulating receptors. Therefore, the best “markers” of these pathways may be the viruses and often their receptors. A deeper understanding of this pathway and associated endosomes is crucial in elucidating the mechanisms of enterovirus uncoating and genome release from the endosomes to start efficient replication. MDPI 2015-12-07 /pmc/articles/PMC4690868/ /pubmed/26690201 http://dx.doi.org/10.3390/v7122945 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Marjomäki, Varpu
Turkki, Paula
Huttunen, Moona
Infectious Entry Pathway of Enterovirus B Species
title Infectious Entry Pathway of Enterovirus B Species
title_full Infectious Entry Pathway of Enterovirus B Species
title_fullStr Infectious Entry Pathway of Enterovirus B Species
title_full_unstemmed Infectious Entry Pathway of Enterovirus B Species
title_short Infectious Entry Pathway of Enterovirus B Species
title_sort infectious entry pathway of enterovirus b species
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690868/
https://www.ncbi.nlm.nih.gov/pubmed/26690201
http://dx.doi.org/10.3390/v7122945
work_keys_str_mv AT marjomakivarpu infectiousentrypathwayofenterovirusbspecies
AT turkkipaula infectiousentrypathwayofenterovirusbspecies
AT huttunenmoona infectiousentrypathwayofenterovirusbspecies