Cargando…
Prevalence of metabolic syndrome in relation to body mass index and polycystic ovarian syndrome in Indian women
OBJECTIVE: To study the prevalence of metabolic syndrome (MBS) in Indian women and to see how does it correlate to body mass index (BMI) and polycystic ovarian syndrome (PCOS) in this population. STUDY DESIGN: Prospective cross-sectional observational study. SETTING: Infertility clinic of a tertiary...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691971/ https://www.ncbi.nlm.nih.gov/pubmed/26752855 http://dx.doi.org/10.4103/0974-1208.170394 |
Sumario: | OBJECTIVE: To study the prevalence of metabolic syndrome (MBS) in Indian women and to see how does it correlate to body mass index (BMI) and polycystic ovarian syndrome (PCOS) in this population. STUDY DESIGN: Prospective cross-sectional observational study. SETTING: Infertility clinic of a tertiary center. MATERIALS AND METHODS: Two hundred women, 120 with PCOs and 80 age-matched controls were enrolled. The prevalence of MBS was studied in the women with and without and was co related to BMI by further subgrouping as team (BMI <23 kg/m3) and obese (BMI >23 kg/m2). The sample size was: team controls-40, obese controls-40, team PCOS-80. Each subject underwent a physical examination and laboratory evaluation for the diagnosis of MBS, which was defined according to the guidelines of National Cholesterol Education Program Adult Treatment Pamel (NCEP ATP III) 2005. INTERVENTION: None. MAIN OUTCOME MEASURES: Main Outcome Measures: Subjects with and without PCOs were compared with each other for the prevalence of MBS, and similarly team subjects were compared with obese subjects. Receiver operator characteristic (ROC) curves were obtained for both the PCOS and non PCOS population separately, co-relating the prevalence of MBS with BMI. These ROC curves were used to establish the cut off values of BMI, which could best predict the risk of MBS. RESULTS: The prevalence of MBS was significantly higher in the women with PCOS, as compared to age-matched controls. Similarly, when BMI was considered, MBS was more prevalent in overweight subjects than in lean subjects with or without PCOS. In subgroup analysis, the presence of PCOS had a lesser impact on the prevalence of MBS as compared to non-PCOS controls with higher BMI. The relative risk of MBS increased as follows: lean controls-1, lean PCOS-2.66, obese controls-5.33, and obese PCOS-6.5. The most appropriate cut-off level of BMI for predicting the risk of MBS in Indian women without PCOS seems to be 23 kg/m(2), whereas, with PCOS, it was 22.5 kg/m(2). CONCLUSION: MBS is more prevalent in women with PCOS. However, obesity is an independent and stronger risk factor for developing MBS. To reduce the risk of MBS and its related long-term health consequences, lifestyle modification is advisable above BMI of 23 kg/m(2) in the normal population and 22.5 kg/m(2) in women with PCOS. |
---|