Cargando…

Inhibition of Autoimmune Diabetes in NOD Mice by miRNA Therapy

Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Duncheng, Shanina, Iryna, Toyofuku, Wendy M., Horwitz, Marc S., Scott, Mark D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692265/
https://www.ncbi.nlm.nih.gov/pubmed/26674203
http://dx.doi.org/10.1371/journal.pone.0145179
Descripción
Sumario:Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testing potential therapeutics for attenuating the decrease in the Treg:Teff ratio and inhibiting disease pathogenesis. Here we show for the first time that a bioreactor manufactured therapeutic consisting of a complex of miRNA species (denoted as TA1) can effectively reset the NOD immune system from a proinflammatory to a tolerogenic state thus preventing or delaying autoimmune diabetes. Treatment of NOD mice with TA1 resulted in a systemic broad-spectrum upregulation of tolerogenic T cell subsets with a parallel downregulation of Teff subsets yielding a dramatic increase in the Treg:Teff ratio. Moreover, the murine-derived TA1 was highly effective in the inhibition of allorecognition of HLA-disparate human PBMC. TA1 demonstrated dose-responsiveness and exhibited equivalent or better inhibition of allorecognition driven proliferation than etanercept (a soluble TNF receptor). These findings demonstrate that miRNA-based therapeutics can effectively attenuate or arrest autoimmune disease processes and may be of significant utility in a broad range of autoimmune diseases including Type 1 diabetes.