Cargando…
Gradient-based MCMC samplers for dynamic causal modelling
In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton’s equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates t...
Autores principales: | Sengupta, Biswa, Friston, Karl J., Penny, Will D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692453/ https://www.ncbi.nlm.nih.gov/pubmed/26213349 http://dx.doi.org/10.1016/j.neuroimage.2015.07.043 |
Ejemplares similares
-
Gradient-free MCMC methods for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2015) -
Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating
por: Cooray, Gerald K., et al.
Publicado: (2016) -
Efficient gradient computation for dynamical models
por: Sengupta, B., et al.
Publicado: (2014) -
Dynamic causal modelling of distributed electromagnetic responses
por: Daunizeau, Jean, et al.
Publicado: (2009) -
A dynamic causal model study of neuronal population dynamics
por: Marreiros, André C., et al.
Publicado: (2010)