Cargando…
Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating
Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic driver...
Autores principales: | Cooray, Gerald K., Sengupta, Biswa, Douglas, Pamela K., Friston, Karl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692455/ https://www.ncbi.nlm.nih.gov/pubmed/26220742 http://dx.doi.org/10.1016/j.neuroimage.2015.07.063 |
Ejemplares similares
-
Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling
por: Cooray, Gerald K., et al.
Publicado: (2015) -
Gradient-free MCMC methods for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2015) -
Gradient-based MCMC samplers for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2016) -
Dynamic causal modelling of distributed electromagnetic responses
por: Daunizeau, Jean, et al.
Publicado: (2009) -
A dynamic causal model study of neuronal population dynamics
por: Marreiros, André C., et al.
Publicado: (2010)