Cargando…

Loss of IL‐4Rα–mediated PI3K signaling accelerates the progression of IgE/mast cell–mediated reactions

Clinical and experimental evidence indicate that polymorphisms within the interleukin 4 (IL‐4) receptor (IL‐4R) chain are sufficient for altered strength of IL‐4/IL‐13 signaling, leading to an exaggerated allergic inflammatory response and increase susceptibility to allergic phenotypes. In the prese...

Descripción completa

Detalles Bibliográficos
Autores principales: Sledd, Jane, Wu, David, Ahrens, Richard, Lee, Jeebong, Waggoner, Lisa, Tsai, Ying Ting, Wang, Yui‐Hsi, Hogan, Simon P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693723/
https://www.ncbi.nlm.nih.gov/pubmed/26734464
http://dx.doi.org/10.1002/iid3.80
Descripción
Sumario:Clinical and experimental evidence indicate that polymorphisms within the interleukin 4 (IL‐4) receptor (IL‐4R) chain are sufficient for altered strength of IL‐4/IL‐13 signaling, leading to an exaggerated allergic inflammatory response and increase susceptibility to allergic phenotypes. In the present study, we show that ablation of IL‐4Rα–induced phosphatidylinositol 3‐kinase (PI3K) activating signal by germline point mutation within the IL‐4Rα motif (Y500F) did not alter susceptibility to IgE‐mediated, food‐induced experimental anaphylaxis. Moreover, diarrhea occurrence, antigen‐specific IgE and intestinal mastocytosis were comparable between WT and IL‐4Rα(Y500F) mice. However, mice unable to stimulate IL‐4Rα–mediated PI3K signaling had accelerated disease progression. Notably, the accelerated anaphylactic response was associated with more rapid histamine‐induced hypovolemia. Mechanistic in vitro and in vivo analyses revealed that endothelial IL‐4Rα PI3K signaling negatively regulates the histamine‐induced endothelial leak response. These results define an unanticipated role for IL‐4Rα–mediated PI3K signaling in negative regulation of IgE‐mediated anaphylactic reactions.