Cargando…

AF4 and AF4-MLL mediate transcriptional elongation of 5-lipoxygenase mRNA by 1, 25-dihydroxyvitamin D(3)

The human 5-lipoxygenase (5-LO), encoded by the ALOX5 gene, is the key enzyme in the formation of pro-inflammatory leukotrienes. ALOX5 gene transcription is strongly stimulated by calcitriol (1α, 25-dihydroxyvitamin D(3)) and TGFβ (transforming growth factor-β). Here, we investigated the influence o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Khalil, Scholz, Bastian, Capelo, Ricardo, Schweighöfer, Ilona, Kahnt, Astrid Stefanie, Marschalek, Rolf, Steinhilber, Dieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694866/
https://www.ncbi.nlm.nih.gov/pubmed/26329759
Descripción
Sumario:The human 5-lipoxygenase (5-LO), encoded by the ALOX5 gene, is the key enzyme in the formation of pro-inflammatory leukotrienes. ALOX5 gene transcription is strongly stimulated by calcitriol (1α, 25-dihydroxyvitamin D(3)) and TGFβ (transforming growth factor-β). Here, we investigated the influence of MLL (activator of transcript initiation), AF4 (activator of transcriptional elongation) as well as of the leukemogenic fusion proteins MLL-AF4 (ectopic activator of transcript initiation) and AF4-MLL (ectopic activator of transcriptional elongation) on calcitriol/TGFβ-dependent 5-LO transcript elongation. We present evidence that the AF4 complex directly interacts with the vitamin D receptor (VDR) and promotes calcitriol-dependent ALOX5 transcript elongation. Activation of transcript elongation was strongly enhanced by the AF4-MLL fusion protein but was sensitive to Flavopiridol. By contrast, MLL-AF4 displayed no effect on transcriptional elongation. Furthermore, HDAC class I inhibitors inhibited the ectopic effects caused by AF4-MLL on transcriptional elongation, suggesting that HDAC class I inhibitors are potential therapeutics for the treatment of t(4;11)(q21;q23) leukemia.