Cargando…
PIWIL1 destabilizes microtubule by suppressing phosphorylation at Ser16 and RLIM-mediated degradation of stathmin1
Human PIWIL1, alias HIWI, is a member of Piwi protein family and expressed in various tumors. However, the underlying mechanism of PIWIL1 in tumorigenesis remains largely unknown. Stathmin1 is a cytosolic phosphoprotein which has a critical role in regulating microtubule dynamics and is overexpresse...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695026/ https://www.ncbi.nlm.nih.gov/pubmed/26317901 |
Sumario: | Human PIWIL1, alias HIWI, is a member of Piwi protein family and expressed in various tumors. However, the underlying mechanism of PIWIL1 in tumorigenesis remains largely unknown. Stathmin1 is a cytosolic phosphoprotein which has a critical role in regulating microtubule dynamics and is overexpressed in many cancers. Here we report that PIWIL1 can directly bind to Stathmin1. Meanwhile, PIWIL1 can up-regulate the expression of Stathmin1 through inhibiting ubiquitin-mediated degradation induced by an E3 ubiquitin ligase RLIM. Furthermore, PIWIL1 can also reduce phosphorylation level of Stathmin1 at Ser-16 through inhibiting the interaction between CaMKII and Stathmin1. Our results showed that PIWIL1 suppresses microtubule polymerization, and promotes cell proliferation and migration via Stathmin1 for the first time. Our study reveals a novel mechanism for PIWIL1 in tumorigenesis. |
---|