Cargando…
Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer
The aim of this study was to explore the role of long non-coding RNA UCA1 (urothelial cancer-associated 1) in acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC). In our study, UCA1 expression was significan...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695138/ https://www.ncbi.nlm.nih.gov/pubmed/26160838 |
Sumario: | The aim of this study was to explore the role of long non-coding RNA UCA1 (urothelial cancer-associated 1) in acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC). In our study, UCA1 expression was significantly increased in lung cancer cells and patients with acquired resistance to EGFR-TKIs. Over-expression of UCA1 was significantly associated with a shorter progression-free survival (PFS) [13.0 vs. 8.5 months, P < 0.01] in tumors with respond to EGFR-TKIs. The significant relationship was not observed in patients with T790M mutation (10.5 vs. 12.0 months, P = 0.778), but in patients with non-T790M (19.0 vs. 9.0 months, P = 0.023). UCA1 knockdown restored gefitinib sensitivity in acquired resistant cells with non-T790M and inhibited the activation of the AKT/mTOR pathway and epithelial-mesenchymal transition (EMT). The mTOR inhibitor was effective in UCA1-expressing cell PC9/R. Inhibiting mTOR could change the expression of UCA1, although there was no significant difference. In conclusion, the influence of over-expression of UCA1 on PFS for patients with acquired resistance to EGFR-TKIs was from the subgroup with non-T790M mutation. UCA1 may induce non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway and EMT. |
---|