Cargando…

Controlling Persister and Biofilm Cells of Gram-Negative Bacteria with a New 1,3,5-Triazine Derivative

Infections caused by multidrug-resistant bacteria have been on the rise. This important issue presents a great challenge to the healthcare system and creates an urgent need for alternative therapeutic agents. As a potential solution to this problem, antimicrobial peptides (AMPs) have attracted incre...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahar, Ali Adem, Liu, Zhigang, Garafalo, Meagan, Kallenbach, Neville, Ren, Dacheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695806/
https://www.ncbi.nlm.nih.gov/pubmed/26473884
http://dx.doi.org/10.3390/ph8040696
Descripción
Sumario:Infections caused by multidrug-resistant bacteria have been on the rise. This important issue presents a great challenge to the healthcare system and creates an urgent need for alternative therapeutic agents. As a potential solution to this problem, antimicrobial peptides (AMPs) have attracted increasing attention due to their broad spectrum of targeted microbes. However, most AMPs are expensive to synthesize, have relatively high cytotoxicity to mammalian cells, and are susceptible to proteolytic degradation. In order to overcome these limitations, novel synthetic AMPs are desired. Using 1,3,5-triazine (TN) as a template, several combinatorial libraries with varying cationic charge and lipophilicity were designed and screened by the Kallenbach lab. From this screening, TN-5 was identified as a potent lead. In the present study, this compound was tested for its antimicrobial activities on Escherichia coli and Pseudomonas aeruginosa. In addition to regular planktonic cells, the effects on biofilms and persister cells (metabolically inactive and antibiotic tolerant subpopulation) were also investigated. TN-5 was found to have a minimum inhibitory concentration (MIC) of 12.8 µM for both species and kill regular planktonic cells of both species dose dependently. TN-5 is also effective against persister cells of both E. coli and P. aeruginosa. The killing of biofilm cells of the mucoid P. aeruginosa PDO300 was enhanced by alginate lyase.