Cargando…

Origins and Early Evolution of the tRNA Molecule

Modern transfer RNAs (tRNAs) are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs). Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RN...

Descripción completa

Detalles Bibliográficos
Autor principal: Tamura, Koji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695843/
https://www.ncbi.nlm.nih.gov/pubmed/26633518
http://dx.doi.org/10.3390/life5041687
_version_ 1782407703350476800
author Tamura, Koji
author_facet Tamura, Koji
author_sort Tamura, Koji
collection PubMed
description Modern transfer RNAs (tRNAs) are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs). Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA) can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC). The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.
format Online
Article
Text
id pubmed-4695843
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-46958432016-01-19 Origins and Early Evolution of the tRNA Molecule Tamura, Koji Life (Basel) Review Modern transfer RNAs (tRNAs) are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs). Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA) can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC). The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome. MDPI 2015-12-03 /pmc/articles/PMC4695843/ /pubmed/26633518 http://dx.doi.org/10.3390/life5041687 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Tamura, Koji
Origins and Early Evolution of the tRNA Molecule
title Origins and Early Evolution of the tRNA Molecule
title_full Origins and Early Evolution of the tRNA Molecule
title_fullStr Origins and Early Evolution of the tRNA Molecule
title_full_unstemmed Origins and Early Evolution of the tRNA Molecule
title_short Origins and Early Evolution of the tRNA Molecule
title_sort origins and early evolution of the trna molecule
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695843/
https://www.ncbi.nlm.nih.gov/pubmed/26633518
http://dx.doi.org/10.3390/life5041687
work_keys_str_mv AT tamurakoji originsandearlyevolutionofthetrnamolecule