Cargando…
Derivation of consensus inactivation status for X-linked genes from genome-wide studies
BACKGROUND: X chromosome inactivation is the epigenetic silencing of the majority of the genes on one of the X chromosomes in XX therian mammals. In humans, approximately 15 % of genes consistently escape from this inactivation and another 15 % of genes vary between individuals or tissues in whether...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696107/ https://www.ncbi.nlm.nih.gov/pubmed/26719789 http://dx.doi.org/10.1186/s13293-015-0053-7 |
Sumario: | BACKGROUND: X chromosome inactivation is the epigenetic silencing of the majority of the genes on one of the X chromosomes in XX therian mammals. In humans, approximately 15 % of genes consistently escape from this inactivation and another 15 % of genes vary between individuals or tissues in whether they are subject to, or escape from, inactivation. Multiple studies have provided inactivation status calls for a large subset of the genes on the X chromosome; however, these studies vary in which genes they were able to make calls for and in some cases which call they give a specific gene. METHODS: This analysis aggregated three published studies that have examined X chromosome inactivation status of genes across the X chromosome, generating consensus calls and identifying discordancies. The impact of expression level and chromosomal location on X chromosome inactivation status was also assessed. RESULTS: Overall, we assigned a consensus XCI status 639 genes, including 78 % of protein-coding genes expressed outside of the testes, with a lower frequency for non-coding RNA and testis-specific genes. Study-specific discordancies suggest that there may be instability of XCI during cell culture and also highlight study-specific variations in call type. We observe an enrichment of discordant genes at boundaries between genes subject to and escaping from inactivation. CONCLUSIONS: This study has compiled a comprehensive list of X-chromosome inactivation statuses for genes and also discovered some biases which will help guide future studies examining X-chromosome inactivation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13293-015-0053-7) contains supplementary material, which is available to authorized users. |
---|