Cargando…

Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo

The flow-responsive transcription factor Krüppel-like factor 2 (KLF2) maintains an anti-coagulant, anti-inflammatory endothelium with sufficient nitric oxide (NO)-bioavailability. In this study, we aimed to explore, both in vitro and in human vascular tissue, expression of the NO-transporting transm...

Descripción completa

Detalles Bibliográficos
Autores principales: Fontijn, Ruud D., Volger, Oscar L., van der Pouw-Kraan, Tineke C., Doddaballapur, Anuradha, Leyen, Thomas, Baggen, Josefien M., Boon, Reinier A., Horrevoets, Anton J. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696733/
https://www.ncbi.nlm.nih.gov/pubmed/26717516
http://dx.doi.org/10.1371/journal.pone.0145777
_version_ 1782407825339711488
author Fontijn, Ruud D.
Volger, Oscar L.
van der Pouw-Kraan, Tineke C.
Doddaballapur, Anuradha
Leyen, Thomas
Baggen, Josefien M.
Boon, Reinier A.
Horrevoets, Anton J. G.
author_facet Fontijn, Ruud D.
Volger, Oscar L.
van der Pouw-Kraan, Tineke C.
Doddaballapur, Anuradha
Leyen, Thomas
Baggen, Josefien M.
Boon, Reinier A.
Horrevoets, Anton J. G.
author_sort Fontijn, Ruud D.
collection PubMed
description The flow-responsive transcription factor Krüppel-like factor 2 (KLF2) maintains an anti-coagulant, anti-inflammatory endothelium with sufficient nitric oxide (NO)-bioavailability. In this study, we aimed to explore, both in vitro and in human vascular tissue, expression of the NO-transporting transmembrane pore aquaporin-1 (AQP1) and its regulation by atheroprotective KLF2 and atherogenic inflammatory stimuli. In silico analysis of gene expression profiles from studies that assessed the effects of KLF2 overexpression in vitro and atherosclerosis in vivo on endothelial cells, identifies AQP1 as KLF2 downstream gene with elevated expression in the plaque-free vessel wall. Biomechanical and pharmaceutical induction of KLF2 in vitro is accompanied by induction of AQP1. Chromosome immunoprecipitation (CHIP) confirms binding of KLF2 to the AQP1 promoter. Inflammatory stimulation of endothelial cells leads to repression of AQP1 transcription, which is restrained by KLF2 overexpression. Immunohistochemistry reveals expression of aquaporin-1 in non-activated endothelium overlying macrophage-poor intimae, irrespective whether these intimae are characterized as being plaque-free or as containing advanced plaque. We conclude that AQP1 expression is subject to KLF2-mediated positive regulation by atheroprotective shear stress and is downregulated under inflammatory conditions both in vitro and in vivo. Thus, endothelial expression of AQP1 characterizes the atheroprotected, non-inflamed vessel wall. Our data provide support for a continuous role of KLF2 in stabilizing the vessel wall via co-temporal expression of eNOS and AQP1 both preceding and during the pathogenesis of atherosclerosis.
format Online
Article
Text
id pubmed-4696733
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-46967332016-01-13 Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo Fontijn, Ruud D. Volger, Oscar L. van der Pouw-Kraan, Tineke C. Doddaballapur, Anuradha Leyen, Thomas Baggen, Josefien M. Boon, Reinier A. Horrevoets, Anton J. G. PLoS One Research Article The flow-responsive transcription factor Krüppel-like factor 2 (KLF2) maintains an anti-coagulant, anti-inflammatory endothelium with sufficient nitric oxide (NO)-bioavailability. In this study, we aimed to explore, both in vitro and in human vascular tissue, expression of the NO-transporting transmembrane pore aquaporin-1 (AQP1) and its regulation by atheroprotective KLF2 and atherogenic inflammatory stimuli. In silico analysis of gene expression profiles from studies that assessed the effects of KLF2 overexpression in vitro and atherosclerosis in vivo on endothelial cells, identifies AQP1 as KLF2 downstream gene with elevated expression in the plaque-free vessel wall. Biomechanical and pharmaceutical induction of KLF2 in vitro is accompanied by induction of AQP1. Chromosome immunoprecipitation (CHIP) confirms binding of KLF2 to the AQP1 promoter. Inflammatory stimulation of endothelial cells leads to repression of AQP1 transcription, which is restrained by KLF2 overexpression. Immunohistochemistry reveals expression of aquaporin-1 in non-activated endothelium overlying macrophage-poor intimae, irrespective whether these intimae are characterized as being plaque-free or as containing advanced plaque. We conclude that AQP1 expression is subject to KLF2-mediated positive regulation by atheroprotective shear stress and is downregulated under inflammatory conditions both in vitro and in vivo. Thus, endothelial expression of AQP1 characterizes the atheroprotected, non-inflamed vessel wall. Our data provide support for a continuous role of KLF2 in stabilizing the vessel wall via co-temporal expression of eNOS and AQP1 both preceding and during the pathogenesis of atherosclerosis. Public Library of Science 2015-12-30 /pmc/articles/PMC4696733/ /pubmed/26717516 http://dx.doi.org/10.1371/journal.pone.0145777 Text en © 2015 Fontijn et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Fontijn, Ruud D.
Volger, Oscar L.
van der Pouw-Kraan, Tineke C.
Doddaballapur, Anuradha
Leyen, Thomas
Baggen, Josefien M.
Boon, Reinier A.
Horrevoets, Anton J. G.
Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo
title Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo
title_full Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo
title_fullStr Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo
title_full_unstemmed Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo
title_short Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo
title_sort expression of nitric oxide-transporting aquaporin-1 is controlled by klf2 and marks non-activated endothelium in vivo
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696733/
https://www.ncbi.nlm.nih.gov/pubmed/26717516
http://dx.doi.org/10.1371/journal.pone.0145777
work_keys_str_mv AT fontijnruudd expressionofnitricoxidetransportingaquaporin1iscontrolledbyklf2andmarksnonactivatedendotheliuminvivo
AT volgeroscarl expressionofnitricoxidetransportingaquaporin1iscontrolledbyklf2andmarksnonactivatedendotheliuminvivo
AT vanderpouwkraantinekec expressionofnitricoxidetransportingaquaporin1iscontrolledbyklf2andmarksnonactivatedendotheliuminvivo
AT doddaballapuranuradha expressionofnitricoxidetransportingaquaporin1iscontrolledbyklf2andmarksnonactivatedendotheliuminvivo
AT leyenthomas expressionofnitricoxidetransportingaquaporin1iscontrolledbyklf2andmarksnonactivatedendotheliuminvivo
AT baggenjosefienm expressionofnitricoxidetransportingaquaporin1iscontrolledbyklf2andmarksnonactivatedendotheliuminvivo
AT boonreiniera expressionofnitricoxidetransportingaquaporin1iscontrolledbyklf2andmarksnonactivatedendotheliuminvivo
AT horrevoetsantonjg expressionofnitricoxidetransportingaquaporin1iscontrolledbyklf2andmarksnonactivatedendotheliuminvivo