Cargando…
Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and de...
Autores principales: | Elazab, Ahmed, Wang, Changmiao, Jia, Fucang, Wu, Jianhuang, Li, Guanglin, Hu, Qingmao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697674/ https://www.ncbi.nlm.nih.gov/pubmed/26793269 http://dx.doi.org/10.1155/2015/485495 |
Ejemplares similares
-
Automated chest screening based on a hybrid model of transfer learning and convolutional sparse denoising autoencoder
por: Wang, Changmiao, et al.
Publicado: (2018) -
Scale-adaptive surface modeling of vascular structures
por: Wu, Jianhuang, et al.
Publicado: (2010) -
Adaptive kernel fuzzy clustering for missing data
por: Rodrigues, Anny K. G., et al.
Publicado: (2021) -
Localized Simple Multiple Kernel K-Means Clustering with Matrix-Induced Regularization
por: Qiu, Jiaji, et al.
Publicado: (2023) -
Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function
por: Zhang, Yaling, et al.
Publicado: (2021)