Cargando…
On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception
Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correla...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697839/ https://www.ncbi.nlm.nih.gov/pubmed/26720000 http://dx.doi.org/10.1371/journal.pone.0145439 |
_version_ | 1782407990955999232 |
---|---|
author | Cousineau, Marion Bidelman, Gavin M. Peretz, Isabelle Lehmann, Alexandre |
author_facet | Cousineau, Marion Bidelman, Gavin M. Peretz, Isabelle Lehmann, Alexandre |
author_sort | Cousineau, Marion |
collection | PubMed |
description | Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). “Neural Pitch Salience” (NPS) measured from FFRs—essentially a time-domain equivalent of the classic pattern recognition models of pitch—has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception. |
format | Online Article Text |
id | pubmed-4697839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46978392016-01-13 On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception Cousineau, Marion Bidelman, Gavin M. Peretz, Isabelle Lehmann, Alexandre PLoS One Research Article Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). “Neural Pitch Salience” (NPS) measured from FFRs—essentially a time-domain equivalent of the classic pattern recognition models of pitch—has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception. Public Library of Science 2015-12-31 /pmc/articles/PMC4697839/ /pubmed/26720000 http://dx.doi.org/10.1371/journal.pone.0145439 Text en © 2015 Cousineau et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cousineau, Marion Bidelman, Gavin M. Peretz, Isabelle Lehmann, Alexandre On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception |
title | On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception |
title_full | On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception |
title_fullStr | On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception |
title_full_unstemmed | On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception |
title_short | On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception |
title_sort | on the relevance of natural stimuli for the study of brainstem correlates: the example of consonance perception |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697839/ https://www.ncbi.nlm.nih.gov/pubmed/26720000 http://dx.doi.org/10.1371/journal.pone.0145439 |
work_keys_str_mv | AT cousineaumarion ontherelevanceofnaturalstimuliforthestudyofbrainstemcorrelatestheexampleofconsonanceperception AT bidelmangavinm ontherelevanceofnaturalstimuliforthestudyofbrainstemcorrelatestheexampleofconsonanceperception AT peretzisabelle ontherelevanceofnaturalstimuliforthestudyofbrainstemcorrelatestheexampleofconsonanceperception AT lehmannalexandre ontherelevanceofnaturalstimuliforthestudyofbrainstemcorrelatestheexampleofconsonanceperception |