Cargando…
Expression of bax and bcl2 Genes in MDMA-induced Hepatotoxicity on Rat Liver Using Quantitative Real-Time PCR Method through Triggering Programmed Cell Death
BACKGROUND: 3-4methylenedioxymethamphetamine (MDMA) is a synthetic and psychoactive drug, which is known popularly as Ecstasy and has toxic effects on human organs. OBJECTIVES: Considering the potential toxic interaction, this study was performed to quantify the expression of bax and bcl2 genes in M...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kowsar
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698330/ https://www.ncbi.nlm.nih.gov/pubmed/26732379 http://dx.doi.org/10.5812/ircmj.24609 |
Sumario: | BACKGROUND: 3-4methylenedioxymethamphetamine (MDMA) is a synthetic and psychoactive drug, which is known popularly as Ecstasy and has toxic effects on human organs. OBJECTIVES: Considering the potential toxic interaction, this study was performed to quantify the expression of bax and bcl2 genes in MDMA-induced hepatotoxicity on rat liver. Subsequently, we evaluated pentoxifylline as a possible protective drug on hepatotoxicity. MATERIALS AND METHODS: Adult male Wistar rats weighting 250 - 300 grams were used in the study. The rats were equally distributed into four experimental groups (5 rat/group). MDMA was dissolved in PBS and injected intraperitoneally (IP) including untreated control, MDMA (MDMA dissolved in PBS), treated-1 (MDMA followed by PTX) and treated-2 (PTX followed by MDMA). All animals given MDMA received 3 doses of 7.5mg/kg with two hours gap between doses. Liver tissue was removed after anaesthetizing. Subsequently, RNA isolation, cDNA synthesis and Real-Time PCR were performed. Finally, data analyzed statistically to determine significantly differences between the groups (P value < 0.05). RESULTS: Using Real-Time quantitative PCR results, the gene expression ratio of bcl2 were calculated 93.80±20.64, 340.45 ± 36.60 and 47.13 ± 5.84 fold in MDMA, treated-1 and treated-2 groups, respectively. Furthermore, this ratio for bax gene obtained 2.13±0.33 fold in MDMA, 1.55 ± 0.26 fold in treated-1 and 10.44 ± 1.56 fold in treated-2 groups. CONCLUSIONS: The present study focused on molecular mechanism of MDMA in programmed cell death using gene expression quantification of a pro-apoptotic and anti-apoptoic gene in MDMA-induced hepatotoxocity. The results showed that MDMA prompted apoptosis in liver and pentoxifylline protected against hepatotoxicity before and after taking MDMA. |
---|