Cargando…

Local Mutational Pressures in Genomes of Zaire Ebolavirus and Marburg Virus

Heterogeneities in nucleotide content distribution along the length of Zaire ebolavirus and Marburg virus genomes have been analyzed. Results showed that there is asymmetric mutational A-pressure in the majority of Zaire ebolavirus genes; there is mutational AC-pressure in the coding region of the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Khrustalev, Vladislav Victorovich, Barkovsky, Eugene Victorovich, Khrustaleva, Tatyana Aleksandrovna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698526/
https://www.ncbi.nlm.nih.gov/pubmed/26798338
http://dx.doi.org/10.1155/2015/678587
Descripción
Sumario:Heterogeneities in nucleotide content distribution along the length of Zaire ebolavirus and Marburg virus genomes have been analyzed. Results showed that there is asymmetric mutational A-pressure in the majority of Zaire ebolavirus genes; there is mutational AC-pressure in the coding region of the matrix protein VP40, probably, caused by its high expression at the end of the infection process; there is also AC-pressure in the 3′-part of the nucleoprotein (NP) coding gene associated with low amount of secondary structure formed by the 3′-part of its mRNA; in the middle of the glycoprotein (GP) coding gene that kind of mutational bias is linked with the high amount of secondary structure formed by the corresponding fragment of RNA negative (−) strand; there is relatively symmetric mutational AU-pressure in the polymerase (Pol) coding gene caused by its low expression level. In Marburg virus all genes, including C-rich fragment of GP coding region, demonstrate asymmetric mutational A-bias, while the last gene (Pol) demonstrates more symmetric mutational AU-pressure. The hypothesis of a newly synthesized RNA negative (−) strand shielding by complementary fragments of mRNAs has been described in this work: shielded fragments of RNA negative (−) strand should be better protected from oxidative damage and prone to ADAR-editing.