Cargando…
Application of Random Forest Survival Models to Increase Generalizability of Decision Trees: A Case Study in Acute Myocardial Infarction
Background. Tree models provide easily interpretable prognostic tool, but instable results. Two approaches to enhance the generalizability of the results are pruning and random survival forest (RSF). The aim of this study is to assess the generalizability of saturated tree (ST), pruned tree (PT), an...
Autores principales: | Yosefian, Iman, Mosa Farkhani, Ehsan, Baneshi, Mohammad Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698527/ https://www.ncbi.nlm.nih.gov/pubmed/26858773 http://dx.doi.org/10.1155/2015/576413 |
Ejemplares similares
-
Assessment of the Importance of a New Risk Factor in Prediction Models
por: Baneshi, Mohammad Reza, et al.
Publicado: (2016) -
OmniGA: Optimized Omnivariate Decision Trees for Generalizable Classification Models
por: Magana-Mora, Arturo, et al.
Publicado: (2017) -
ST-Segment Elevation Myocardial Infarction Care During COVID-19: Losing Sight of the Forest for the Trees
por: Rodriguez-Leor, Oriol, et al.
Publicado: (2020) -
Household food insecurity during pregnancy as a predictor of anthropometric indices failures in infants aged less than 6 months: a retrospective longitudinal study
por: Karbin, Karim, et al.
Publicado: (2022) -
Future tree survival in European forests depends on understorey tree diversity
por: Billing, Maik, et al.
Publicado: (2022)