Cargando…

Noisy decision thresholds can account for suboptimal detection of low coherence motion

Noise in sensory signals can vary over both space and time. Moving random dot stimuli are commonly used to quantify how the visual system accounts for spatial noise. In these stimuli, a fixed proportion of “signal” dots move in the same direction and the remaining “noise” dots are randomly replotted...

Descripción completa

Detalles Bibliográficos
Autores principales: Price, Nicholas S. C., VanCuylenberg, John B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698657/
https://www.ncbi.nlm.nih.gov/pubmed/26726736
http://dx.doi.org/10.1038/srep18700
Descripción
Sumario:Noise in sensory signals can vary over both space and time. Moving random dot stimuli are commonly used to quantify how the visual system accounts for spatial noise. In these stimuli, a fixed proportion of “signal” dots move in the same direction and the remaining “noise” dots are randomly replotted. The spatial coherence, or proportion of signal versus noise dots, is fixed across time; however, this means that little is known about how temporally-noisy signals are integrated. Here we use a stimulus with low temporal coherence; the signal direction is only presented on a fraction of frames. Human observers are able to reliably detect and discriminate the direction of a 200 ms motion pulse, even when just 25% of frames within the pulse move in the signal direction. Using psychophysical reverse-correlation analyses, we show that observers are strongly influenced by the number of near-target directions spread throughout the pulse, and that consecutive signal frames have only a small additional influence on perception. Finally, we develop a model inspired by the leaky integration of the responses of direction-selective neurons, which reliably represents motion direction, and which can account for observers’ sub-optimal detection of motion pulses by incorporating a noisy decision threshold.