Cargando…
π Berry phase and Zeeman splitting of Weyl semimetal TaP
The recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698660/ https://www.ncbi.nlm.nih.gov/pubmed/26726050 http://dx.doi.org/10.1038/srep18674 |
_version_ | 1782408062726832128 |
---|---|
author | Hu, J. Liu, J. Y. Graf, D. Radmanesh, S. M. A. Adams, D. J. Chuang, A. Wang, Y. Chiorescu, I. Wei, J. Spinu, L. Mao, Z. Q. |
author_facet | Hu, J. Liu, J. Y. Graf, D. Radmanesh, S. M. A. Adams, D. J. Chuang, A. Wang, Y. Chiorescu, I. Wei, J. Spinu, L. Mao, Z. Q. |
author_sort | Hu, J. |
collection | PubMed |
description | The recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state, including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted. |
format | Online Article Text |
id | pubmed-4698660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46986602016-01-13 π Berry phase and Zeeman splitting of Weyl semimetal TaP Hu, J. Liu, J. Y. Graf, D. Radmanesh, S. M. A. Adams, D. J. Chuang, A. Wang, Y. Chiorescu, I. Wei, J. Spinu, L. Mao, Z. Q. Sci Rep Article The recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state, including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted. Nature Publishing Group 2016-01-04 /pmc/articles/PMC4698660/ /pubmed/26726050 http://dx.doi.org/10.1038/srep18674 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Hu, J. Liu, J. Y. Graf, D. Radmanesh, S. M. A. Adams, D. J. Chuang, A. Wang, Y. Chiorescu, I. Wei, J. Spinu, L. Mao, Z. Q. π Berry phase and Zeeman splitting of Weyl semimetal TaP |
title | π Berry phase and Zeeman splitting of Weyl semimetal TaP |
title_full | π Berry phase and Zeeman splitting of Weyl semimetal TaP |
title_fullStr | π Berry phase and Zeeman splitting of Weyl semimetal TaP |
title_full_unstemmed | π Berry phase and Zeeman splitting of Weyl semimetal TaP |
title_short | π Berry phase and Zeeman splitting of Weyl semimetal TaP |
title_sort | π berry phase and zeeman splitting of weyl semimetal tap |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698660/ https://www.ncbi.nlm.nih.gov/pubmed/26726050 http://dx.doi.org/10.1038/srep18674 |
work_keys_str_mv | AT huj pberryphaseandzeemansplittingofweylsemimetaltap AT liujy pberryphaseandzeemansplittingofweylsemimetaltap AT grafd pberryphaseandzeemansplittingofweylsemimetaltap AT radmaneshsma pberryphaseandzeemansplittingofweylsemimetaltap AT adamsdj pberryphaseandzeemansplittingofweylsemimetaltap AT chuanga pberryphaseandzeemansplittingofweylsemimetaltap AT wangy pberryphaseandzeemansplittingofweylsemimetaltap AT chiorescui pberryphaseandzeemansplittingofweylsemimetaltap AT weij pberryphaseandzeemansplittingofweylsemimetaltap AT spinul pberryphaseandzeemansplittingofweylsemimetaltap AT maozq pberryphaseandzeemansplittingofweylsemimetaltap |