Cargando…
Privacy-preserving GWAS analysis on federated genomic datasets
BACKGROUND: The biomedical community benefits from the increasing availability of genomic data to support meaningful scientific research, e.g., Genome-Wide Association Studies (GWAS). However, high quality GWAS usually requires a large amount of samples, which can grow beyond the capability of a sin...
Autores principales: | Constable, Scott D, Tang, Yuzhe, Wang, Shuang, Jiang, Xiaoqian, Chapin, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699163/ https://www.ncbi.nlm.nih.gov/pubmed/26733045 http://dx.doi.org/10.1186/1472-6947-15-S5-S2 |
Ejemplares similares
-
Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis
por: Lee, Junghye, et al.
Publicado: (2018) -
Privacy‐preserving quality control of neuroimaging datasets in federated environments
por: Saha, Debbrata K., et al.
Publicado: (2022) -
Privacy-preserving federated genome-wide association studies via dynamic sampling
por: Wang, Xinyue, et al.
Publicado: (2023) -
Privacy-preserving genome-wide association studies on cloud environment using fully homomorphic encryption
por: Lu, Wen-Jie, et al.
Publicado: (2015) -
Secure distributed genome analysis for GWAS and sequence comparison computation
por: Zhang, Yihua, et al.
Publicado: (2015)