Cargando…

DNA Assembly in 3D Printed Fluidics

The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, micro...

Descripción completa

Detalles Bibliográficos
Autores principales: Patrick, William G., Nielsen, Alec A. K., Keating, Steven J., Levy, Taylor J., Wang, Che-Wei, Rivera, Jaime J., Mondragón-Palomino, Octavio, Carr, Peter A., Voigt, Christopher A., Oxman, Neri, Kong, David S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699221/
https://www.ncbi.nlm.nih.gov/pubmed/26716448
http://dx.doi.org/10.1371/journal.pone.0143636
_version_ 1782408159833358336
author Patrick, William G.
Nielsen, Alec A. K.
Keating, Steven J.
Levy, Taylor J.
Wang, Che-Wei
Rivera, Jaime J.
Mondragón-Palomino, Octavio
Carr, Peter A.
Voigt, Christopher A.
Oxman, Neri
Kong, David S.
author_facet Patrick, William G.
Nielsen, Alec A. K.
Keating, Steven J.
Levy, Taylor J.
Wang, Che-Wei
Rivera, Jaime J.
Mondragón-Palomino, Octavio
Carr, Peter A.
Voigt, Christopher A.
Oxman, Neri
Kong, David S.
author_sort Patrick, William G.
collection PubMed
description The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.
format Online
Article
Text
id pubmed-4699221
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-46992212016-01-14 DNA Assembly in 3D Printed Fluidics Patrick, William G. Nielsen, Alec A. K. Keating, Steven J. Levy, Taylor J. Wang, Che-Wei Rivera, Jaime J. Mondragón-Palomino, Octavio Carr, Peter A. Voigt, Christopher A. Oxman, Neri Kong, David S. PLoS One Research Article The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. Public Library of Science 2015-12-30 /pmc/articles/PMC4699221/ /pubmed/26716448 http://dx.doi.org/10.1371/journal.pone.0143636 Text en © 2015 Patrick et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Patrick, William G.
Nielsen, Alec A. K.
Keating, Steven J.
Levy, Taylor J.
Wang, Che-Wei
Rivera, Jaime J.
Mondragón-Palomino, Octavio
Carr, Peter A.
Voigt, Christopher A.
Oxman, Neri
Kong, David S.
DNA Assembly in 3D Printed Fluidics
title DNA Assembly in 3D Printed Fluidics
title_full DNA Assembly in 3D Printed Fluidics
title_fullStr DNA Assembly in 3D Printed Fluidics
title_full_unstemmed DNA Assembly in 3D Printed Fluidics
title_short DNA Assembly in 3D Printed Fluidics
title_sort dna assembly in 3d printed fluidics
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699221/
https://www.ncbi.nlm.nih.gov/pubmed/26716448
http://dx.doi.org/10.1371/journal.pone.0143636
work_keys_str_mv AT patrickwilliamg dnaassemblyin3dprintedfluidics
AT nielsenalecak dnaassemblyin3dprintedfluidics
AT keatingstevenj dnaassemblyin3dprintedfluidics
AT levytaylorj dnaassemblyin3dprintedfluidics
AT wangchewei dnaassemblyin3dprintedfluidics
AT riverajaimej dnaassemblyin3dprintedfluidics
AT mondragonpalominooctavio dnaassemblyin3dprintedfluidics
AT carrpetera dnaassemblyin3dprintedfluidics
AT voigtchristophera dnaassemblyin3dprintedfluidics
AT oxmanneri dnaassemblyin3dprintedfluidics
AT kongdavids dnaassemblyin3dprintedfluidics