Cargando…

A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer

Epithelial-mesenchymal transition (EMT) is involved in the characteristics of malignancy, such as invasion, metastasis, and chemoresistance. In biliary tract cancer (BTC), EMT is induced by transforming growth factor-beta 1 (TGF-β1). The EMT is reversible; therefore, it is conceivable that it could...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakamoto, Takuya, Kobayashi, Shogo, Yamada, Daisaku, Nagano, Hiroaki, Tomokuni, Akira, Tomimaru, Yoshito, Noda, Takehiro, Gotoh, Kunihito, Asaoka, Tadafumi, Wada, Hiroshi, Kawamoto, Koichi, Marubashi, Shigeru, Eguchi, Hidetoshi, Doki, Yuichiro, Mori, Masaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699768/
https://www.ncbi.nlm.nih.gov/pubmed/26726879
http://dx.doi.org/10.1371/journal.pone.0145985
_version_ 1782408227421421568
author Sakamoto, Takuya
Kobayashi, Shogo
Yamada, Daisaku
Nagano, Hiroaki
Tomokuni, Akira
Tomimaru, Yoshito
Noda, Takehiro
Gotoh, Kunihito
Asaoka, Tadafumi
Wada, Hiroshi
Kawamoto, Koichi
Marubashi, Shigeru
Eguchi, Hidetoshi
Doki, Yuichiro
Mori, Masaki
author_facet Sakamoto, Takuya
Kobayashi, Shogo
Yamada, Daisaku
Nagano, Hiroaki
Tomokuni, Akira
Tomimaru, Yoshito
Noda, Takehiro
Gotoh, Kunihito
Asaoka, Tadafumi
Wada, Hiroshi
Kawamoto, Koichi
Marubashi, Shigeru
Eguchi, Hidetoshi
Doki, Yuichiro
Mori, Masaki
author_sort Sakamoto, Takuya
collection PubMed
description Epithelial-mesenchymal transition (EMT) is involved in the characteristics of malignancy, such as invasion, metastasis, and chemoresistance. In biliary tract cancer (BTC), EMT is induced by transforming growth factor-beta 1 (TGF-β1). The EMT is reversible; therefore, it is conceivable that it could be related to some epigenetic changes. We focused on histone deacetylase (HDAC) inhibitors as regulators of TGF-β1 signaling, and investigated their effect on EMT and chemoresistance. We employed four BTC cell lines (MzChA-1, gemcitabine-resistant MzChA-1, TFK-1, and gemcitabine-resistant TFK-1) and used vorinostat as the HDAC inhibitor. The relative mRNA expression of an epithelial marker (CDH1) and mesenchymal markers (CDH2, vimentin, SNAI1) were measured by qRT-PCR to evaluate factors associated with EMT. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to evaluate the chemoresistance of each cell line. In addition, NOD/SCID mice were used to evaluate the effect of vorinostat in vivo. In the parent MzChA-1 and TFK-1 cell lines, TGF-β1 induced EMT and chemoresistance; while vorinostat inhibited the EMT and chemoresistance induced by TGF-β1. In gemcitabine-resistant cell lines that highly expressed TGF-β1, vorinostat inhibited EMT and attenuated chemoresistance. We showed that vorinostat inhibits nuclear translocation of SMAD4 which is a signaling factor of TGF-β1, and this is one of the mechanisms by which vorinostat regulates EMT. We also showed that vorinostat attenuates the binding affinity of SMAD4 to the CDH1-related transcription factors SNAI1, SNAI2, ZEB1, ZEB2, and TWIST. Furthermore, combination therapy with vorinostat and gemcitabine improved survival time in the mice xenografted with gemcitabine resistant MzChA-1 cells. In conclusion, vorinostat regulated TGF-β1-induced EMT and chemoresistance through inhibition of SMAD4 nuclear translocation.
format Online
Article
Text
id pubmed-4699768
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-46997682016-01-15 A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer Sakamoto, Takuya Kobayashi, Shogo Yamada, Daisaku Nagano, Hiroaki Tomokuni, Akira Tomimaru, Yoshito Noda, Takehiro Gotoh, Kunihito Asaoka, Tadafumi Wada, Hiroshi Kawamoto, Koichi Marubashi, Shigeru Eguchi, Hidetoshi Doki, Yuichiro Mori, Masaki PLoS One Research Article Epithelial-mesenchymal transition (EMT) is involved in the characteristics of malignancy, such as invasion, metastasis, and chemoresistance. In biliary tract cancer (BTC), EMT is induced by transforming growth factor-beta 1 (TGF-β1). The EMT is reversible; therefore, it is conceivable that it could be related to some epigenetic changes. We focused on histone deacetylase (HDAC) inhibitors as regulators of TGF-β1 signaling, and investigated their effect on EMT and chemoresistance. We employed four BTC cell lines (MzChA-1, gemcitabine-resistant MzChA-1, TFK-1, and gemcitabine-resistant TFK-1) and used vorinostat as the HDAC inhibitor. The relative mRNA expression of an epithelial marker (CDH1) and mesenchymal markers (CDH2, vimentin, SNAI1) were measured by qRT-PCR to evaluate factors associated with EMT. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to evaluate the chemoresistance of each cell line. In addition, NOD/SCID mice were used to evaluate the effect of vorinostat in vivo. In the parent MzChA-1 and TFK-1 cell lines, TGF-β1 induced EMT and chemoresistance; while vorinostat inhibited the EMT and chemoresistance induced by TGF-β1. In gemcitabine-resistant cell lines that highly expressed TGF-β1, vorinostat inhibited EMT and attenuated chemoresistance. We showed that vorinostat inhibits nuclear translocation of SMAD4 which is a signaling factor of TGF-β1, and this is one of the mechanisms by which vorinostat regulates EMT. We also showed that vorinostat attenuates the binding affinity of SMAD4 to the CDH1-related transcription factors SNAI1, SNAI2, ZEB1, ZEB2, and TWIST. Furthermore, combination therapy with vorinostat and gemcitabine improved survival time in the mice xenografted with gemcitabine resistant MzChA-1 cells. In conclusion, vorinostat regulated TGF-β1-induced EMT and chemoresistance through inhibition of SMAD4 nuclear translocation. Public Library of Science 2016-01-04 /pmc/articles/PMC4699768/ /pubmed/26726879 http://dx.doi.org/10.1371/journal.pone.0145985 Text en © 2016 Sakamoto et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
spellingShingle Research Article
Sakamoto, Takuya
Kobayashi, Shogo
Yamada, Daisaku
Nagano, Hiroaki
Tomokuni, Akira
Tomimaru, Yoshito
Noda, Takehiro
Gotoh, Kunihito
Asaoka, Tadafumi
Wada, Hiroshi
Kawamoto, Koichi
Marubashi, Shigeru
Eguchi, Hidetoshi
Doki, Yuichiro
Mori, Masaki
A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer
title A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer
title_full A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer
title_fullStr A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer
title_full_unstemmed A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer
title_short A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer
title_sort histone deacetylase inhibitor suppresses epithelial-mesenchymal transition and attenuates chemoresistance in biliary tract cancer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699768/
https://www.ncbi.nlm.nih.gov/pubmed/26726879
http://dx.doi.org/10.1371/journal.pone.0145985
work_keys_str_mv AT sakamototakuya ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT kobayashishogo ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT yamadadaisaku ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT naganohiroaki ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT tomokuniakira ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT tomimaruyoshito ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT nodatakehiro ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT gotohkunihito ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT asaokatadafumi ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT wadahiroshi ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT kawamotokoichi ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT marubashishigeru ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT eguchihidetoshi ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT dokiyuichiro ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT morimasaki ahistonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT sakamototakuya histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT kobayashishogo histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT yamadadaisaku histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT naganohiroaki histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT tomokuniakira histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT tomimaruyoshito histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT nodatakehiro histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT gotohkunihito histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT asaokatadafumi histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT wadahiroshi histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT kawamotokoichi histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT marubashishigeru histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT eguchihidetoshi histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT dokiyuichiro histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer
AT morimasaki histonedeacetylaseinhibitorsuppressesepithelialmesenchymaltransitionandattenuateschemoresistanceinbiliarytractcancer