Cargando…

The Effect of In Vitro Cultivation on the Transcriptome of Adult Brugia malayi

BACKGROUND: Filarial nematodes cause serious and debilitating infections in human populations of tropical countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite, Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely used mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Ballesteros, Cristina, Tritten, Lucienne, O’Neill, Maeghan, Burkman, Erica, Zaky, Weam I., Xia, Jianguo, Moorhead, Andrew, Williams, Steven A., Geary, Timothy G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699822/
https://www.ncbi.nlm.nih.gov/pubmed/26727204
http://dx.doi.org/10.1371/journal.pntd.0004311
Descripción
Sumario:BACKGROUND: Filarial nematodes cause serious and debilitating infections in human populations of tropical countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite, Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely used model organism in experiments that employ culture systems, the impact of which on the worms is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using Illumina RNA sequencing, we characterized changes in gene expression upon in vitro maintenance of adult B. malayi female worms at four time points: immediately upon removal from the host, immediately after receipt following shipment, and after 48 h and 5 days in liquid culture media. The dramatic environmental change and the 24 h time lapse between removal from the host and establishment in culture caused a globally dysregulated gene expression profile. We found a maximum of 562 differentially expressed genes based on pairwise comparison between time points. After an initial shock upon removal from the host and shipping, a few stress fingerprints remained after 48 h in culture and until the experiment was stopped. This was best illustrated by a strong and persistent up-regulation of several genes encoding cuticle collagens, as well as serpins. CONCLUSIONS/SIGNIFICANCE: These findings suggest that B. malayi can be maintained in culture as a valid system for pharmacological and biological studies, at least for several days after removal from the host and adaptation to the new environment. However, genes encoding several stress indicators remained dysregulated until the experiment was stopped.