Cargando…
Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation
Certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as “extracellular respiration”. Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be cru...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699859/ https://www.ncbi.nlm.nih.gov/pubmed/26682818 http://dx.doi.org/10.1016/j.bpj.2015.10.038 |
_version_ | 1782408244017233920 |
---|---|
author | Breuer, Marian Rosso, Kevin M. Blumberger, Jochen |
author_facet | Breuer, Marian Rosso, Kevin M. Blumberger, Jochen |
author_sort | Breuer, Marian |
collection | PubMed |
description | Certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as “extracellular respiration”. Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrC from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (K(d)) = 490 μM, in good agreement with recent experimental estimates, K(d) = 255 μM. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration. |
format | Online Article Text |
id | pubmed-4699859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Biophysical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-46998592016-12-15 Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation Breuer, Marian Rosso, Kevin M. Blumberger, Jochen Biophys J Proteins and Nucleic Acids Certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as “extracellular respiration”. Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrC from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (K(d)) = 490 μM, in good agreement with recent experimental estimates, K(d) = 255 μM. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration. The Biophysical Society 2015-12-15 2015-12-15 /pmc/articles/PMC4699859/ /pubmed/26682818 http://dx.doi.org/10.1016/j.bpj.2015.10.038 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Proteins and Nucleic Acids Breuer, Marian Rosso, Kevin M. Blumberger, Jochen Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation |
title | Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation |
title_full | Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation |
title_fullStr | Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation |
title_full_unstemmed | Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation |
title_short | Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation |
title_sort | flavin binding to the deca-heme cytochrome mtrc: insights from computational molecular simulation |
topic | Proteins and Nucleic Acids |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699859/ https://www.ncbi.nlm.nih.gov/pubmed/26682818 http://dx.doi.org/10.1016/j.bpj.2015.10.038 |
work_keys_str_mv | AT breuermarian flavinbindingtothedecahemecytochromemtrcinsightsfromcomputationalmolecularsimulation AT rossokevinm flavinbindingtothedecahemecytochromemtrcinsightsfromcomputationalmolecularsimulation AT blumbergerjochen flavinbindingtothedecahemecytochromemtrcinsightsfromcomputationalmolecularsimulation |