Cargando…

Generation and Characterization of a MYF5 Reporter Human iPS Cell Line Using CRISPR/Cas9 Mediated Homologous Recombination

Human iPS cells hold great promise for disease modeling and treatment of degenerative disorders including muscular dystrophies. Although a few research groups have used them for skeletal muscle differentiation, most were based on gene over-expression or long-term mesenchymal differentiation and retr...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jianbo, Hunt, Samuel D., Xue, Haipeng, Liu, Ying, Darabi, Radbod
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700424/
https://www.ncbi.nlm.nih.gov/pubmed/26729410
http://dx.doi.org/10.1038/srep18759
Descripción
Sumario:Human iPS cells hold great promise for disease modeling and treatment of degenerative disorders including muscular dystrophies. Although a few research groups have used them for skeletal muscle differentiation, most were based on gene over-expression or long-term mesenchymal differentiation and retrospective identification of myogenic cells. Therefore, this study was aimed to generate a knock-in reporter human iPS cell line for MYF5, as an early myogenic specification gene, to allow prospective identification and purification of myogenic progenitors from human iPS cells. By using a CRISPR/Cas9 double nickase strategy, a 2A-GFP reporter was inserted before the stop codon of the MYF5 gene using homologous recombination. This approach allowed for highly efficient in-frame targeting of MYF5 in human iPS cells. Furthermore, in order to prove the reporter function, endogenous MYF5 expression was induced using a novel dead Cas9-VP160 transcriptional activator. Induced clones demonstrated appropriate MYF5-GFP co-expression. Finally, to confirm the differentiation potential, reporter human iPS clones were differentiated through embryoid body method and MYF5-GFP(+) myogenic cells were sorted and characterized. These data provides valuable guidelines for generation of knock-in reporter human iPS cell lines for myogenic genes which can be used for disease modeling, drug screening, gene correction and future in vivo applications.