Cargando…
Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling
Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be res...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700477/ https://www.ncbi.nlm.nih.gov/pubmed/26728857 http://dx.doi.org/10.1083/jcb.201506018 |
_version_ | 1782408327755464704 |
---|---|
author | Fusco, Ludovico Lefort, Riwal Smith, Kevin Benmansour, Fethallah Gonzalez, German Barillari, Caterina Rinn, Bernd Fleuret, Francois Fua, Pascal Pertz, Olivier |
author_facet | Fusco, Ludovico Lefort, Riwal Smith, Kevin Benmansour, Fethallah Gonzalez, German Barillari, Caterina Rinn, Bernd Fleuret, Francois Fua, Pascal Pertz, Olivier |
author_sort | Fusco, Ludovico |
collection | PubMed |
description | Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. |
format | Online Article Text |
id | pubmed-4700477 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47004772016-07-04 Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling Fusco, Ludovico Lefort, Riwal Smith, Kevin Benmansour, Fethallah Gonzalez, German Barillari, Caterina Rinn, Bernd Fleuret, Francois Fua, Pascal Pertz, Olivier J Cell Biol Research Articles Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. The Rockefeller University Press 2016-01-04 /pmc/articles/PMC4700477/ /pubmed/26728857 http://dx.doi.org/10.1083/jcb.201506018 Text en © 2016 Fusco et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Fusco, Ludovico Lefort, Riwal Smith, Kevin Benmansour, Fethallah Gonzalez, German Barillari, Caterina Rinn, Bernd Fleuret, Francois Fua, Pascal Pertz, Olivier Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling |
title | Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling |
title_full | Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling |
title_fullStr | Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling |
title_full_unstemmed | Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling |
title_short | Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling |
title_sort | computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of rho gtpase signaling |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700477/ https://www.ncbi.nlm.nih.gov/pubmed/26728857 http://dx.doi.org/10.1083/jcb.201506018 |
work_keys_str_mv | AT fuscoludovico computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT lefortriwal computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT smithkevin computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT benmansourfethallah computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT gonzalezgerman computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT barillaricaterina computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT rinnbernd computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT fleuretfrancois computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT fuapascal computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling AT pertzolivier computervisionprofilingofneuriteoutgrowthdynamicsrevealsspatiotemporalmodularityofrhogtpasesignaling |