Cargando…

Zds1/Zds2–PP2A(Cdc55) complex specifies signaling output from Rho1 GTPase

Budding yeast Rho1 guanosine triphosphatase (GTPase) plays an essential role in polarized cell growth by regulating cell wall glucan synthesis and actin organization. Upon cell wall damage, Rho1 blocks polarized cell growth and repairs the wounds by activating the cell wall integrity (CWI) Pkc1–mito...

Descripción completa

Detalles Bibliográficos
Autores principales: Jonasson, Erin M., Rossio, Valentina, Hatakeyama, Riko, Abe, Mitsuhiro, Ohya, Yoshikazu, Yoshida, Satoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700482/
https://www.ncbi.nlm.nih.gov/pubmed/26728856
http://dx.doi.org/10.1083/jcb.201508119
Descripción
Sumario:Budding yeast Rho1 guanosine triphosphatase (GTPase) plays an essential role in polarized cell growth by regulating cell wall glucan synthesis and actin organization. Upon cell wall damage, Rho1 blocks polarized cell growth and repairs the wounds by activating the cell wall integrity (CWI) Pkc1–mitogen-activated protein kinase (MAPK) pathway. A fundamental question is how active Rho1 promotes distinct signaling outputs under different conditions. Here we identified the Zds1/Zds2–protein phosphatase 2A(Cdc55) (PP2A(Cdc55)) complex as a novel Rho1 effector that regulates Rho1 signaling specificity. Zds1/Zds2–PP2A(Cdc55) promotes polarized growth and cell wall synthesis by inhibiting Rho1 GTPase-activating protein (GAP) Lrg1 but inhibits CWI pathway by stabilizing another Rho1 GAP, Sac7, suggesting that active Rho1 is biased toward cell growth over stress response. Conversely, upon cell wall damage, Pkc1–Mpk1 activity inhibits cortical PP2A(Cdc55), ensuring that Rho1 preferentially activates the CWI pathway for cell wall repair. We propose that PP2A(Cdc55) specifies Rho1 signaling output and that reciprocal antagonism between Rho1–PP2A(Cdc55) and Rho1–Pkc1 explains how only one signaling pathway is robustly activated at a time.