Cargando…

Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress

Multidrug resistance 2 (Mdr2), also called adenosine triphosphate-binding cassette B4 (ABCB4), is the transporter of phosphatidylcholine (PC) at the canalicular membrane of mouse hepatocytes, which plays an essential role for bile formation. Mutations in human homologue MDR3 are associated with seve...

Descripción completa

Detalles Bibliográficos
Autores principales: Tebbi, Ali, Levillayer, Florence, Jouvion, Grégory, Fiette, Laurence, Soubigou, Guillaume, Varet, Hugo, Boudjadja, Nesrine, Cairo, Stefano, Hashimoto, Kosuke, Suzuki, Ana Maria, Carninci, Piero, Carissimo, Annamaria, di Bernardo, Diego, Wei, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700935/
https://www.ncbi.nlm.nih.gov/pubmed/26542370
http://dx.doi.org/10.1093/carcin/bgv156
_version_ 1782408400942923776
author Tebbi, Ali
Levillayer, Florence
Jouvion, Grégory
Fiette, Laurence
Soubigou, Guillaume
Varet, Hugo
Boudjadja, Nesrine
Cairo, Stefano
Hashimoto, Kosuke
Suzuki, Ana Maria
Carninci, Piero
Carissimo, Annamaria
di Bernardo, Diego
Wei, Yu
author_facet Tebbi, Ali
Levillayer, Florence
Jouvion, Grégory
Fiette, Laurence
Soubigou, Guillaume
Varet, Hugo
Boudjadja, Nesrine
Cairo, Stefano
Hashimoto, Kosuke
Suzuki, Ana Maria
Carninci, Piero
Carissimo, Annamaria
di Bernardo, Diego
Wei, Yu
author_sort Tebbi, Ali
collection PubMed
description Multidrug resistance 2 (Mdr2), also called adenosine triphosphate-binding cassette B4 (ABCB4), is the transporter of phosphatidylcholine (PC) at the canalicular membrane of mouse hepatocytes, which plays an essential role for bile formation. Mutations in human homologue MDR3 are associated with several liver diseases. Knockout of Mdr2 results in hepatic inflammation, liver fibrosis and hepatocellular carcinoma (HCC). Whereas the pathogenesis in Mdr2 (−/−) mice has been largely attributed to the toxicity of bile acids due to the absence of PC in the bile, the question of whether Mdr2 deficiency per se perturbs biological functions in the cell has been poorly addressed. As Mdr2 is expressed in many cell types, we used mouse embryonic fibroblasts (MEF) derived from Mdr2 (−/−) embryos to show that deficiency of Mdr2 increases reactive oxygen species accumulation, lipid peroxidation and DNA damage. We found that Mdr2 (−/−) MEFs undergo spontaneous transformation and that Mdr2 (−/−) mice are more susceptible to chemical carcinogen-induced intestinal tumorigenesis. Microarray analysis in Mdr2−/− MEFs and cap analysis of gene expression in Mdr2 (−/−) HCCs revealed extensively deregulated genes involved in oxidation reduction, fatty acid metabolism and lipid biosynthesis. Our findings imply a close link between Mdr2 (−/−)-associated tumorigenesis and perturbation of these biological processes and suggest potential extrahepatic functions of Mdr2/MDR3.
format Online
Article
Text
id pubmed-4700935
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-47009352016-01-06 Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress Tebbi, Ali Levillayer, Florence Jouvion, Grégory Fiette, Laurence Soubigou, Guillaume Varet, Hugo Boudjadja, Nesrine Cairo, Stefano Hashimoto, Kosuke Suzuki, Ana Maria Carninci, Piero Carissimo, Annamaria di Bernardo, Diego Wei, Yu Carcinogenesis Original Manuscript Multidrug resistance 2 (Mdr2), also called adenosine triphosphate-binding cassette B4 (ABCB4), is the transporter of phosphatidylcholine (PC) at the canalicular membrane of mouse hepatocytes, which plays an essential role for bile formation. Mutations in human homologue MDR3 are associated with several liver diseases. Knockout of Mdr2 results in hepatic inflammation, liver fibrosis and hepatocellular carcinoma (HCC). Whereas the pathogenesis in Mdr2 (−/−) mice has been largely attributed to the toxicity of bile acids due to the absence of PC in the bile, the question of whether Mdr2 deficiency per se perturbs biological functions in the cell has been poorly addressed. As Mdr2 is expressed in many cell types, we used mouse embryonic fibroblasts (MEF) derived from Mdr2 (−/−) embryos to show that deficiency of Mdr2 increases reactive oxygen species accumulation, lipid peroxidation and DNA damage. We found that Mdr2 (−/−) MEFs undergo spontaneous transformation and that Mdr2 (−/−) mice are more susceptible to chemical carcinogen-induced intestinal tumorigenesis. Microarray analysis in Mdr2−/− MEFs and cap analysis of gene expression in Mdr2 (−/−) HCCs revealed extensively deregulated genes involved in oxidation reduction, fatty acid metabolism and lipid biosynthesis. Our findings imply a close link between Mdr2 (−/−)-associated tumorigenesis and perturbation of these biological processes and suggest potential extrahepatic functions of Mdr2/MDR3. Oxford University Press 2016-01 2015-11-05 /pmc/articles/PMC4700935/ /pubmed/26542370 http://dx.doi.org/10.1093/carcin/bgv156 Text en © The Author 2015. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Original Manuscript
Tebbi, Ali
Levillayer, Florence
Jouvion, Grégory
Fiette, Laurence
Soubigou, Guillaume
Varet, Hugo
Boudjadja, Nesrine
Cairo, Stefano
Hashimoto, Kosuke
Suzuki, Ana Maria
Carninci, Piero
Carissimo, Annamaria
di Bernardo, Diego
Wei, Yu
Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress
title Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress
title_full Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress
title_fullStr Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress
title_full_unstemmed Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress
title_short Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress
title_sort deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress
topic Original Manuscript
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700935/
https://www.ncbi.nlm.nih.gov/pubmed/26542370
http://dx.doi.org/10.1093/carcin/bgv156
work_keys_str_mv AT tebbiali deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT levillayerflorence deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT jouviongregory deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT fiettelaurence deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT soubigouguillaume deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT varethugo deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT boudjadjanesrine deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT cairostefano deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT hashimotokosuke deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT suzukianamaria deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT carnincipiero deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT carissimoannamaria deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT dibernardodiego deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress
AT weiyu deficiencyofmultidrugresistance2contributestocelltransformationthroughoxidativestress