Cargando…
A Spiking Neural Network in sEMG Feature Extraction
We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the pr...
Autores principales: | Lobov, Sergey, Mironov, Vasiliy, Kastalskiy, Innokentiy, Kazantsev, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701259/ https://www.ncbi.nlm.nih.gov/pubmed/26540060 http://dx.doi.org/10.3390/s151127894 |
Ejemplares similares
-
Latent Factors Limiting the Performance of sEMG-Interfaces
por: Lobov, Sergey, et al.
Publicado: (2018) -
A Neuromuscular Interface for Robotic Devices Control
por: Kastalskiy, Innokentiy, et al.
Publicado: (2018) -
Spiking Signatures of Spontaneous Activity Bursts in Hippocampal Cultures
por: Pimashkin, Alexey, et al.
Publicado: (2011) -
Spatial Memory in a Spiking Neural Network with Robot Embodiment
por: Lobov, Sergey A., et al.
Publicado: (2021) -
An sEMG-Based Human-Exoskeleton Interface Fusing Convolutional Neural Networks With Hand-Crafted Features
por: Yang, Xiao, et al.
Publicado: (2022)